题目列表(包括答案和解析)
(本小题满分12分)
设不等边三角形ABC的外心与重心分别为M、G,若A(-1,0),B(1,0)且MG//AB.
(Ⅰ) 求三角形ABC顶点C的轨迹方程;
(Ⅱ) 设顶点C的轨迹为D,已知直线
过点(0,1)并且与曲线D交于P、N两点,若O为坐标原点,
满足OP⊥ON,求直线
的方程.
(本小题满分12分)
设不等边三角形ABC的外心与重心分别为M、G,若A(-1,0),B(1,0)且MG//AB.
(Ⅰ) 求三角形ABC顶点C的轨迹方程;
(Ⅱ) 设顶点C的轨迹为D,已知直线
过点(0,1)并且与曲线D交于P、N两点,若O为坐标原点,
满足OP⊥ON,求直线
的方程.
(本小题满分12分)
![]()
某体育馆拟用运动场的边角地建一个矩形的健身室 (如图所示),ABCD是一块边长为50 m的正方形地皮,扇形CEF是运动场的一部分,其半径为40 m,矩形AGHM就是拟建的健身室,其中G、M分别在AB和AD上,H在 上。设矩形AGHM的面积为S,∠HCF=θ,请将S表示为θ的函数,并指出当点H在 的何处时,该健身室的面积最大,最大面积是多少?
![]()
(本小题满分12分)
已知椭圆E:
(a>b>0)的离心率e=
,左、右焦点分别为F1、F2,点P(2,
),点F2在线段PF1的中垂线上
(1)求椭圆E的方程;
(2)设l1,l2是过点G(
,0)且互相垂直的两条直线,l1交E于A, B两点,l2交E于C,D两点,求l1的斜率k的取值范围;
(3)在(2)的条件下,设AB,CD的中点分别为M,N,试问直线MN是否恒过定点?
若经过,求出该定点坐标;若不经过,请说明理由。
(本小题满分12分)
椭圆G:
的左、右焦点分别为
,M是椭圆上的一点,且满足
=0.
(1)求离心率e的取值范围;
(1)当离心率e取得最小值时,点N(0,3)到椭圆上的点的最远距离为5
.
①求此时椭圆G的方程;
②设斜率为
的直线l与椭圆G相交于不同的两点A、B,Q为AB的中点,
问:A、B两点能否关于过点
、Q的直线对称?若能,求出k的取值范
围;若不能,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com