题目列表(包括答案和解析)
(本小题满分12分)
如图,设抛物线C1:
的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率
的椭圆C2与抛物线C1在x轴上方的交点为P。
当m = 1时,求椭圆C2的方程;
当△PF1F2的边长恰好是三个连续的自然数时,求抛物线方程;此时设⊙C1、⊙C2……⊙Cn是圆心在
上的一系列圆,它们的圆心纵坐标分别为a1,a2……an,已知a1 = 6,a1 > a2 >……> an > 0,又⊙Ck(k = 1,2,…,n)都与y轴相切,且顺次逐个相邻外切,求数列{an}的通项公式.
|
(本小题满分12分) 如图,已知椭圆
的上顶点为
,右焦点为
,直线
与圆![]()
相切.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若不过点
的动直线
与椭圆
相交于
、
两点,
且
求证:直线
过定点,并求出该定点
的坐标.
(本小题满分12分)
如图,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N(点M必在点N的右侧),且
已知椭圆D:
的焦距等于
,且过点![]()
![]()
( I ) 求圆C和椭圆D的方程;
(Ⅱ) 若过点M斜率不为零的直线
与椭圆D交于A、B两点,求证:直线NA与直线NB的倾角互补.
(本小题满分12分)
如图,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N(点M必在点N的右侧),且
已知椭圆D:
的焦距等于
,且过点![]()
![]()
( I ) 求圆C和椭圆D的方程;
(Ⅱ) 若过点M斜率不为零的直线
与椭圆D交于A、B两点,求证:直线NA与直线NB的倾角互补.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com