题目列表(包括答案和解析)
已知椭圆的中心在原点,焦点在x轴上,F1,F2分别为左、右焦点,离心率为e.
(1)若焦距长2c=4
,且
、e、
成等比数列,求椭圆的方程;
(2)在(1)的条件下,直线l:ex-y+a=0与x轴、y轴分别相交于M、N两点,P是直线l与椭圆C的一个交点,且
=λ
,求λ的值.
已知椭圆C:
(a>b>0)经过点P(1,
),且两焦点与短轴的一个端点构成等腰直角三角形.
(1)求椭圆的方程;
(2)动直线l:mx+ny+
n=0(m,n∈R).交椭圆C于A、B两点,求证:以AB为直径的动圆恒经过定点(0,1).
已知椭圆C:
+
=1(a>b>0)经过点P(1,
),且两焦点与短轴的一个端点的连线构成等腰直角三角形.
(1)求椭圆的方程;
(2)动直线l:mx+ny+
n=0(m,n∈R)交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过点T.若存在,求出点T的坐标;若不存在,请说明理由.
如图,已知椭圆C:
+y2=1,A、B是四条直线x=±2,y=±1所围成的两个顶点.
(1)设P是椭圆C上任意一点,若
=m
+n
,求证:动点Q(m,n)在定圆上运动,并求出定圆的方程;
(2)若M、N是椭圆C上两上动点,且直线OM、ON的斜率之积等于直线OA、OB的斜率之积,试探求△OMN的面积是否为定值,说明理由.
如图,已知椭圆C:
+y2=1,A、B是四条直线x=±2,y=±1所围成的两个顶点.
(1)设P是椭圆C上任意一点,若
=m
+n
,求证:动点Q(m,n)在定圆上运动,并求出定圆的方程;
(2)若M、N是椭圆C上两上动点,且直线OM、ON的斜率之积等于直线OA、OB的斜率之积,试探求△OMN的面积是否为定值,说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com