已知(.)是直线与圆的一个公共点.则的取值范围为 . 附加题:已知, , ,数列满足, ,.证明:. 附加题:(1)的结果是 , (2)已知.若A=B.则 . 江苏省赣马高级中学2009届高三复习倒计时数学小题专项训练倒数9 查看更多

 

题目列表(包括答案和解析)

精英家教网已知点P(4,4),圆C:(x-m)2+y2=5(m<3)与椭圆E:
x2
a2
+
y2
b2
=1 (a>b>0)
有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.
(1)求直线PF1的方程;
(2)求椭圆E的方程;
(3)设Q为椭圆E上的一个动点,求证:以QF1为直径的圆与圆x2+y2=18相切.

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0,且a>1)的右焦点为F(c,0),离心率为e.直线l:y=ex-a与x轴、y轴分别交于点A、B,M是直线l与椭圆C的一个公共点.
(1)试用a、b、c表示点M的坐标.
(2)若
AM
AB
,证明:λ=1-e2

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左.右焦点为F1、F2,离心率为e.直线l:y=ex+a与x轴.y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设
AM
AB

(Ⅰ)证明:λ=1-e2
(Ⅱ)确定λ的值,使得△PF1F2是等腰三角形.

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点为F1、F2,离心率为e.直线l:y=ex+a与x轴、y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设
AM
AB

(Ⅰ)证明:λ=1-e2
(Ⅱ)若λ=
3
4
,△MF1F2的周长为6;写出椭圆C的方程;
(Ⅲ)确定λ的值,使得△PF1F2是等腰三角形.

查看答案和解析>>

已知离心率为
1
2
的椭圆
x2
a2
+
y2
b2
=1(a>b>0)与过点A(2,0)、B(0,1)的直线有且只有一个公共点P,点F是椭圆的右焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)在x轴上是否存在一点M(m,0),使过M且与椭圆交于R、S两点的任意直线l,均满足∠RFP=∠SFP?若存在,求m的值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案