20. 某射手向一个气球射击.假定各次射击是相互独立的.且每次射击击破气球的概率均为. (I)若该射手共射击三次.求第三次射击才将球击破的概率, (II)给出两种积分方案: 方案甲:提供三次射击机会和一张700点的积分卡.若未击中的次数为.则扣除积分128点. 方案乙:提供四次射击机会和一张1000点的积分卡.若未击中的次数为.则扣除积分256点. 在执行上述两种方案时规定:若将球击破.则射击停止,若未击破.则继续射击直至用完规定的射击次数. 问:该射手应选择哪种方案才能使积分卡剩余点数最多.并说明理由. 查看更多

 

题目列表(包括答案和解析)

(2009•昆明模拟)某射手向一个气球射击,假定各次射击是相互独立的,且每次射击击破气球的概率均为
14

(I)若该射手共射击三次,求第三次射击才将球击破的概率;
(II)给出两种积分方案:
方案甲:提供三次射击机会和一张700点的积分卡,若未击中的次数为ξ,则扣除积分128ξ点.
方案乙:提供四次射击机会和一张1000点的积分卡,若未击中的次数为ξ,则扣除积分256ξ点.
在执行上述两种方案时规定:若将球击破,则射击停止;若未击破,则继续射击直至用完规定的射击次数.
问:该射手应选择哪种方案才能使积分卡剩余点数最多,并说明理由.

查看答案和解析>>

某射手向一个气球射击,假定各次射击是相互独立的,且每次射击击破气球的概率均为
(I)若该射手共射击三次,求第三次射击才将球击破的概率;
(II)给出两种积分方案:
方案甲:提供三次射击机会和一张700点的积分卡,若未击中的次数为ξ,则扣除积分128ξ点.
方案乙:提供四次射击机会和一张1000点的积分卡,若未击中的次数为ξ,则扣除积分256ξ点.
在执行上述两种方案时规定:若将球击破,则射击停止;若未击破,则继续射击直至用完规定的射击次数.
问:该射手应选择哪种方案才能使积分卡剩余点数最多,并说明理由.

查看答案和解析>>

某射手向一个气球射击,假定各次射击是相互独立的,且每次射击击破气球的概率均为
1
4

(I)若该射手共射击三次,求第三次射击才将球击破的概率;
(II)给出两种积分方案:
方案甲:提供三次射击机会和一张700点的积分卡,若未击中的次数为ξ,则扣除积分128ξ点.
方案乙:提供四次射击机会和一张1000点的积分卡,若未击中的次数为ξ,则扣除积分256ξ点.
在执行上述两种方案时规定:若将球击破,则射击停止;若未击破,则继续射击直至用完规定的射击次数.
问:该射手应选择哪种方案才能使积分卡剩余点数最多,并说明理由.

查看答案和解析>>

(2013•顺义区一模)现有甲、乙两个靶.某射手向甲靶射击两次,每次命中的概率为
3
4
,每命中一次得1分,没有命中得0分;向乙靶射击一次,命中的概率为
2
3
,命中得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.
(I)求该射手恰好命中两次的概率;
(II)求该射手的总得分X的分布列及数学期望EX;
(III)求该射手向甲靶射击比向乙靶射击多击中一次的概率.

查看答案和解析>>

(2012•山东)现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为
3
4
,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为
2
3
,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.
(Ⅰ)求该射手恰好命中一次得的概率;
(Ⅱ)求该射手的总得分X的分布列及数学期望EX.

查看答案和解析>>


同步练习册答案