题目列表(包括答案和解析)
已知数列
的前
项和为
,且
(
N*),其中
.
(Ⅰ) 求
的通项公式;
(Ⅱ) 设
(
N*).
①证明:
;
② 求证:
.
【解析】本试题主要考查了数列的通项公式的求解和运用。运用
关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到
,②由于
,
所以
利用放缩法,从此得到结论。
解:(Ⅰ)当
时,由
得
. ……2分
若存在
由
得
,
从而有
,与
矛盾,所以
.
从而由
得
得
. ……6分
(Ⅱ)①证明:![]()
证法一:∵
∴![]()
∴
∴
.…………10分
证法二:
,下同证法一.
……10分
证法三:(利用对偶式)设
,
,
则
.又
,也即
,所以
,也即
,又因为
,所以
.即
………10分
证法四:(数学归纳法)①当
时,
,命题成立;
②假设
时,命题成立,即
,
则当
时,![]()
![]()
即![]()
即![]()
故当
时,命题成立.
综上可知,对一切非零自然数
,不等式②成立. ………………10分
②由于
,
所以
,
从而
.
也即![]()
如图,已知直线
(
)与抛物线
:
和圆
:
都相切,
是
的焦点.
(Ⅰ)求
与
的值;
(Ⅱ)设
是
上的一动点,以
为切点作抛物线
的切线
,直线
交
轴于点
,以
、
为邻边作平行四边形
,证明:点
在一条定直线上;
(Ⅲ)在(Ⅱ)的条件下,记点
所在的定直线为
, 直线
与
轴交点为
,连接
交抛物线
于
、
两点,求△
的面积
的取值范围.
![]()
【解析】第一问中利用圆
:
的圆心为
,半径
.由题设圆心到直线
的距离
.
即
,解得
(
舍去)
设
与抛物线的相切点为
,又
,得
,
.
代入直线方程得:
,∴
所以
,![]()
第二问中,由(Ⅰ)知抛物线
方程为
,焦点
. ………………(2分)
设
,由(Ⅰ)知以
为切点的切线
的方程为
.
令
,得切线
交
轴的
点坐标为
所以
,
, ∵四边形FAMB是以FA、FB为邻边作平行四边形
∴
因为
是定点,所以点
在定直线![]()
第三问中,设直线
,代入
得
结合韦达定理得到。
解:(Ⅰ)由已知,圆
:
的圆心为
,半径
.由题设圆心到直线
的距离
.
即
,解得
(
舍去). …………………(2分)
设
与抛物线的相切点为
,又
,得
,
.
代入直线方程得:
,∴
所以
,
.
……(2分)
(Ⅱ)由(Ⅰ)知抛物线
方程为
,焦点
. ………………(2分)
设
,由(Ⅰ)知以
为切点的切线
的方程为
.
令
,得切线
交
轴的
点坐标为
所以
,
, ∵四边形FAMB是以FA、FB为邻边作平行四边形,
∴
因为
是定点,所以点
在定直线
上.…(2分)
(Ⅲ)设直线
,代入
得
, ……)得
,
…………………………… (2分)
,
.
△
的面积
范围是![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com