2.已知向量 (1)当时.求的值,(2)求在上的值域. 解:(1) .∴.∴ (2) ∵.∴.∴ ∴ ∴函数 查看更多

 

题目列表(包括答案和解析)

已知向量
a
=(sinx,
3
2
),
b
=(cosx,-1).
(1)当
a
b
时,求2cos2x-sin2x的值;
(2)求f(x)=(
a
+
b
)•
b
[-
π
2
,0]
上的单调区间,并说明单调性.

查看答案和解析>>

已知向量
m
=(
3
sinωx,0),
n
=(cosωx,-sinωx)(ω>0)
,在函数f(x)=
m
•(
m
+
n
)+t
的图象上,对称中心到对称轴的最小距离为
π
4
,且当x∈[0,
π
3
]
时f(x)的最小值为
3
2

(1)求f(x)的解析式;
(2)求f(x)的单调递增区间;
(3)若对任意x1,x2∈[0,
π
3
]都有|f(x1)-f(x2)|<m,求实数m的取值范围.

查看答案和解析>>

已知向量
a
=(2cosx,2sinx),
b
=(cosx,-
3
cosx)
,函数f(x)=
a
b
g(x)=f(
π
6
x+
π
3
)+ax
(a为常数).
(1)求函数f(x)图象的对称轴方程;
(2)若函数g(x)的图象关于y轴对称,求g(1)+g(2)+g(3)+…+g(2011)的值;
(3)已知对任意实数x1,x2,都有|cos
π
3
x1-cos
π
3
x2|≤
π
3
|x1-x2|
成立,当且仅当x1=x2时取“=”.求证:当a>
3
时,函数g(x)在(-∞,+∞)上是增函数.

查看答案和解析>>

已知向量
a
=(cosx,2),
b
=(sinx,-3).
(1)当
a
b
时,求3cos2x-sin2x的值;
(2)求函数f(x)=(
a
-
b
)•
a
在x∈[-
π
2
,0]上的值域.

查看答案和解析>>

已知向量
a
=(
3
sinωx,cosωx),
b
=(cosωx,cosωx),ω>0
,记函数f(x)=
a
b

若函数f(x)的最小正周期为π.
(1)求ω的值;
(2)当0<x≤
π
3
时,试求f(x)的值域;
(3)求f(x)在[0,π]上的单调递增区间.

查看答案和解析>>


同步练习册答案