题目列表(包括答案和解析)
(本小题满分14分)
函数
定义在区间[a, b]上,设“
”表示函数
在集合D上的最小值,“
”表示函数
在集合D上的最大值.现设
,
,
若存在最小正整数k,使得
对任意的
成立,则称函数
为区间
上的“第k类压缩函数”.
![]()
(Ⅰ) 若函数
,求
的最大值,写出
的解析式;
(Ⅱ) 若
,函数
是
上的“第3类压缩函数”,求m的取值范围.
(本小题满分14分)
函数
定义在区间[a, b]上,设“
”表示函数
在集合D上的最小值,“
”表示函数
在集合D上的最大值.现设
,
,
若存在最小正整数k,使得
对任意的
成立,则称函数
为区间
上的“第k类压缩函数”.
(Ⅰ) 若函数
,求
的最大值,写出
的解析式;
(Ⅱ) 若
,函数
是
上的“第3类压缩函数”,求m的取值范围.
ks**5u
(本小题满分14分)
函数
定义在区间[a, b]上,设“
”表示函数
在集合D上的最小值,“
”表示函数
在集合D上的最大值.现设
,
,
若存在最小正整数k,使得
对任意的
成立,则称函数
为区间
上的“第k类压缩函数”.
(Ⅰ) 若函数
,求
的最大值,写出
的解析式;
(Ⅱ) 若
,函数
是
上的“第3类压缩函数”,求m的取值范围.
ks**5u
(本小题满分14分)
设M是由满足下列条件的函数
构成的集合:“①方程
有实数根;
②函数
的导数
满足
”
(I)判断函数
是否是集合M中的元素,并说明理由;
(II)集合M中的元素
具有下面的性质:若
的定义域为D,则对于任意[m,n]
,都存在
,使得等式
成立。试用这一性质证明:方程
只有一个实数根;
(III)设x1是方程
的实数根,求证:对于
定义域中任意的x2,x3,当
时,有![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com