解: (1)由, 得, 则由,解得F(3,0).------------- 设椭圆的方程为,则, 解得 --- 所以椭圆的方程为 (2)因为点在椭圆上运动,所以, 从而圆心到直线的距离. 所以直线与圆恒相交---------------- 又直线被圆截得的弦长为 --- 由于,所以,则, 即直线被圆截得的弦长的取值范围是----- 查看更多

 

题目列表(包括答案和解析)

函数y=f(x)由(2xy=2x?2y确定,则方程f(x)=
x2
3
的实数解有(  )
A、0个B、1个C、2个D、3个

查看答案和解析>>

已知点A(7,1),B(1,4),若直线yax与线段AB交于点C,且=2,则实数a=________.

[答案] 1

[解析] 设C(x0ax0),则=(x0-7,ax0-1),=(1-x0,4-ax0),

=2,∴,解之得.

 

查看答案和解析>>

已知数列的前项和为,且 (N*),其中

(Ⅰ) 求的通项公式;

(Ⅱ) 设 (N*).

①证明:

② 求证:.

【解析】本试题主要考查了数列的通项公式的求解和运用。运用关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到,②由于

所以利用放缩法,从此得到结论。

解:(Ⅰ)当时,由.  ……2分

若存在

从而有,与矛盾,所以.

从而由.  ……6分

 (Ⅱ)①证明:

证法一:∵

 

.…………10分

证法二:,下同证法一.           ……10分

证法三:(利用对偶式)设

.又,也即,所以,也即,又因为,所以.即

                    ………10分

证法四:(数学归纳法)①当时, ,命题成立;

   ②假设时,命题成立,即,

   则当时,

    即

故当时,命题成立.

综上可知,对一切非零自然数,不等式②成立.           ………………10分

②由于

所以

从而.

也即

 

查看答案和解析>>

小明和同桌小聪一起合作探索:如图,一架5米长的梯子AB斜靠在铅直的墙壁AC上,这时梯子的底端B到墙角C的距离为1.4米.如果梯子的顶端A沿墙壁下滑0.8米,那么底端B将向左移动多少米?

(1)小明的思路如下,请你将小明的解答补充完整:

解:设点B将向左移动x米,即BE=x,则:

EC= x+1.4,DC=ACDC=-0.8=4,

DE=5,在Rt△DEC中,由EC2+DC2=DE2

得方程为:     , 解方程得:    

∴点B将向左移动    米.

(2)解题回顾时,小聪提出了如下两个问题:

①将原题中的“下滑0.8米”改为“下滑1.8米”,那么答案会是1.8米吗?为什么?

②梯子顶端下滑的距离与梯子底端向左移动的距离能相等吗?为什么?

请你解答小聪提出的这两个问题.

 

查看答案和解析>>

已知是公差为d的等差数列,是公比为q的等比数列

(Ⅰ)若 ,是否存在,有?请说明理由;

(Ⅱ)若(a、q为常数,且aq0)对任意m存在k,有,试求a、q满足的充要条件;

(Ⅲ)若试确定所有的p,使数列中存在某个连续p项的和式数列中的一项,请证明.

【解析】第一问中,由,整理后,可得为整数不存在,使等式成立。

(2)中当时,则

,其中是大于等于的整数

反之当时,其中是大于等于的整数,则

显然,其中

满足的充要条件是,其中是大于等于的整数

(3)中设为偶数时,式左边为偶数,右边为奇数,

为偶数时,式不成立。由式得,整理

时,符合题意。当为奇数时,

结合二项式定理得到结论。

解(1)由,整理后,可得为整数不存在,使等式成立。

(2)当时,则,其中是大于等于的整数反之当时,其中是大于等于的整数,则

显然,其中

满足的充要条件是,其中是大于等于的整数

(3)设为偶数时,式左边为偶数,右边为奇数,

为偶数时,式不成立。由式得,整理

时,符合题意。当为奇数时,

   由,得

为奇数时,此时,一定有使上式一定成立。为奇数时,命题都成立

 

查看答案和解析>>


同步练习册答案