题目列表(包括答案和解析)
| 1 |
| 2n |
| 3 |
4. m>2或m<-2 解析:因为f(x)=
在(-1,1)内有零点,所以f(-1)f(1)<0,即(2+m)(2-m)<0,则m>2或m<-2
随机变量
的所有等可能取值为1,2…,n,若
,则( )
A. n=3 B.n=4 C. n=5 D.不能确定
5.m=-3,n=2 解析:因为
的两零点分别是1与2,所以
,即
,解得![]()
6.
解析:因为
只有一个零点,所以方程
只有一个根,因此
,所以![]()
在数列{an}中,
,其中θ为方程
的解,则这个数列的前n项和Sn为( )
|
| A. |
| B. |
| C. |
| D. |
|
| 1 |
| 2n |
| 3 |
A.Sn=-
| B.Sn=
| ||||||||||||
C.Sn=-
| D.Sn=
|
已知等差数列{an}的首项为4,公差为4,其前n项和为Sn,则数列 {
}的前n项和为( )
|
| A. |
| B. |
| C. |
| D. |
|
| 考点: | 数列的求和;等差数列的性质. |
| 专题: | 等差数列与等比数列. |
| 分析: | 利用等差数列的前n项和即可得出Sn,再利用“裂项求和”即可得出数列 { |
| 解答: | 解:∵Sn=4n+ ∴ ∴数列 { 故选A. |
| 点评: | 熟练掌握等差数列的前n项和公式、“裂项求和”是解题的关键. |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com