[解析]:A 设底边斜率为K.直线与的斜率分别为 .又原点在底边上.所以K=3 查看更多

 

题目列表(包括答案和解析)

【解析】A.设

,所以是偶函数,所以选A.

查看答案和解析>>

已知函数f(x)=(ax2+bx+c)ex在x=1处取得极小值,其图象过点A(0,1),且在点A处切线的斜率为-1.

(Ⅰ)求f(x)的解析式;

(Ⅱ)设函数g(x)的定义域D,若存在区间[m,n]D,使得g(x)在[m,n]上的值域也是[m,n],则称区间[m,n]为函数g(x)的“保值区间”.证明:当x>1时,函数f(x)不存在“保值区间”;

查看答案和解析>>

直线l过点P(t>1)斜率为,与直线m:y=kx(k>0)交于点A,与x轴交于点B,点A,B的横坐标分别为xA,xB,记f(t)=xA·xB

(Ⅰ)求f(t)的解析式;

(Ⅱ)设数列{an}(n≥1,n∈N)满足a1=1,an=f()(n≥2),求数列{an}的通项公式;

(Ⅲ)在(Ⅱ)的条件下,当1<k<3时,证明不等式

查看答案和解析>>

【解析图片】设二次函数f(x)=ax2+bx+c(a,b,c∈R)满足f(-1)=0,且对任意实数x,均有x-1≤f(x)≤x2-3x+3恒成立.
(1)求f(x)的表达式;
(2)若关于x的不等式f(x)≤nx-1的解集非空,求实数n的取值的集合A.
(3)若关于x的方程f(x)=nx-1的两根为x1,x2,试问:是否存在实数m,使得不等式m2+tm+1≤|x1-x2|对任意n∈A及t∈[-3,3]恒成立?若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

设A,B,C是三角形的三边
(1)(文)若c=1,a,b是从{1,2,3,4,5,6}中任取的两个数(a,b可以相等),求a,b,c能构成三角形的概率;
(2)(文)若a,b是从(0,6)中任取的两个数(a,b可以相等),求构成以a为底边的等腰三角形的概率.

查看答案和解析>>


同步练习册答案