解析:(1) 抛物线y2=2px的准线为x=-,于是4+=5, ∴p=2. ∴抛物线方程为y2=4x. , 由题意得B, 又∵F(1,0), ∴kFA=;MN⊥FA, ∴kMN=-, 则FA的方程为y=(x-1),MN的方程为y-2=-x,解方程组得x=,y=, ∴N的坐标(,). (1) 由题意得, ,圆M.的圆心是点(0,2), 半径为2, 当m=4时, 直线AK的方程为x=4,此时,直线AK与圆M相离. 当m≠4时, 直线AK的方程为y=y-4m=0, 圆心M(0,2)到直线AK的距离d=,令d>2,解得m>1 ∴当m>1时, AK与圆M相离; 当m=1时, AK与圆M相切; 当m<1时, AK与圆M相交. 查看更多

 

题目列表(包括答案和解析)

经过抛物线y2=2p(x+2p)(p>0)的顶点A作互相垂直的两直线分别交抛物线于B、C两点,求线段BC的中点M轨迹方程.

查看答案和解析>>

经过抛物线y2=2p(x+2p)(p>0)的顶点A作互相垂直的两直线分别交抛物线于B、C两点,求线段BC的中点M轨迹方程.

查看答案和解析>>

如图,设抛物线y2=2p(x+)(p>0)的准线和焦点分别是双曲线的右准线和右焦点,直线y=kx与抛物线及双曲线在第一象限分别交于点A、B,且A为线段OB的中点(O为坐标原点).

(Ⅰ)当k=时,求双曲线渐近线的斜率;

(Ⅱ)设抛物线的顶点为M,抛物线与直线y=kx的另一交点为C,是否存在实数k,使得△ACM的面积等于直线MA、MC的斜率的乘积的绝对值?若存在,求出k值;若不存在,说明理由.

查看答案和解析>>

抛物线y2=2px,(p>0)绕焦点依逆时针方向旋转90°所得抛物线方程为…(  )

查看答案和解析>>

(2012•大连二模)已知圆C:(x-2p
)
2
 
+(y-2p
)
2
 
=
r
2
 
(r>0,p>0)
过抛物线
y
2
 
=2px
的焦点,则抛物线y2=2px的准线与圆C的位置关系是(  )

查看答案和解析>>


同步练习册答案