解析:(I)由题意得所求的椭圆方程为. (II)不妨设则抛物线在点P处的切线斜率为.直线MN的方程为.将上式代入椭圆的方程中.得.即.因为直线MN与椭圆有两个不同的交点.所以有. 设线段MN的中点的横坐标是.则. 设线段PA的中点的横坐标是.则.由题意得.即有.其中的或, 当时有.因此不等式不成立,因此.当时代入方程得.将代入不等式成立.因此的最小值为1. 查看更多

 

题目列表(包括答案和解析)

解析:依题意得f(x)的图象关于直线x=1对称,f(x+1)=-f(x-1),f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x),即函数f(x)是以4为周期的函数.由f(x)在[3,5]上是增函数与f(x)的图象关于直线x=1对称得,f(x)在[-3,-1]上是减函数.又函数f(x)是以4为周期的函数,因此f(x)在[1,3]上是减函数,f(x)在[1,3]上的最大值是f(1),最小值是f(3).

答案:A

查看答案和解析>>

若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式
f(x1)+f(x2)
2
≤f(
x1+x2
2
)成立,则称函数y=f(x)为区间D上的凸函数.
(1)证明:定义在R上的二次函数f(x)=ax2+bx+c(a<0)是凸函数;
(2)设f(x)=ax2+x(a∈R,a≠0),并且x∈[0,1]时,f(x)≤1恒成立,求实数a的取值范围,并判断函数
f(x)=ax2+x(a∈R,a≠0)能否成为R上的凸函数;
(3)定义在整数集Z上的函数f(x)满足:①对任意的x,y∈Z,f(x+y)=f(x)f(y);②f(0)≠0,f(1)=2.
试求f(x)的解析式;并判断所求的函数f(x)是不是R上的凸函数说明理由.

查看答案和解析>>

若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式≤f()成立,则称函数y=f(x)为区间D上的凸函数.
(1)证明:定义在R上的二次函数f(x)=ax2+bx+c(a<0)是凸函数;
(2)设f(x)=ax2+x(a∈R,a≠0),并且x∈[0,1]时,f(x)≤1恒成立,求实数a的取值范围,并判断函数
f(x)=ax2+x(a∈R,a≠0)能否成为R上的凸函数;
(3)定义在整数集Z上的函数f(x)满足:①对任意的x,y∈Z,f(x+y)=f(x)f(y);②f(0)≠0,f(1)=2.
试求f(x)的解析式;并判断所求的函数f(x)是不是R上的凸函数说明理由.

查看答案和解析>>

若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式
f(x1)+f(x2)
2
≤f(
x1+x2
2
)成立,则称函数y=f(x)为区间D上的凸函数.
(1)证明:定义在R上的二次函数f(x)=ax2+bx+c(a<0)是凸函数;
(2)设f(x)=ax2+x(a∈R,a≠0),并且x∈[0,1]时,f(x)≤1恒成立,求实数a的取值范围,并判断函数
f(x)=ax2+x(a∈R,a≠0)能否成为R上的凸函数;
(3)定义在整数集Z上的函数f(x)满足:①对任意的x,y∈Z,f(x+y)=f(x)f(y);②f(0)≠0,f(1)=2.
试求f(x)的解析式;并判断所求的函数f(x)是不是R上的凸函数说明理由.

查看答案和解析>>

若定义在区间D上的函数对于区间D上的任意两个值总有以下不等式成立,则称函数为区间D上的凸函数 .

(1)证明:定义在R上的二次函数是凸函数;

(2)设,并且时,恒成立,求实数的取值范围,并判断函数能否成为上的凸函数;

(3)定义在整数集Z上的函数满足:①对任意的;②. 试求的解析式;并判断所求的函数是不是R上的凸函数说明理由.

查看答案和解析>>


同步练习册答案