4.在应用题背景条件下.能否把一个复杂事件分解为若干个互相排斥或相互独立.既不重复又不遗漏的简单事件是解答这类应用题的关键.也是考查学生分析问题.解决问题的能力的重要环节 查看更多

 

题目列表(包括答案和解析)

某企业生产A、B两种产品,根据市场调查与预测,A产品的月利润y=f(x)与投资额x成正比,且投资4万元时,月利润为2万元;B产品的月利润y=g(x)与投资额x的算术平方根成正比,且投资4万元时,月利润为1万元.(允许仅投资1种产品)
(1)分别求出A、B两种产品的月利润表示为投资额x的函数关系式;
(2)该企业已筹集到10万元资金,并全部投入A、B两种产品的生产,问:怎样分配这10万元资金,才能使企业获得最大的月利润,最大月利润是多少?(结果用分数表示)
(3)在(2)的条件下,能否保证企业总能获得2万元以上的月利润,为什么?

查看答案和解析>>

已知函数f(x)=ax2+4(a为非零实数),设函数F(x)=
(1)若f(-2)=0,求F(x)的表达式.
(2)在(1)的条件下,解不等式1≤|F(x)|≤2.
(3)设mn<0,m+n>0,试判断F(m)+F(n)能否大于0?

查看答案和解析>>

已知函数f(x)=ax2+4(a为非零实数),设函数F(x)=
(1)若f(-2)=0,求F(x)的表达式.
(2)在(1)的条件下,解不等式1≤|F(x)|≤2.
(3)设mn<0,m+n>0,试判断F(m)+F(n)能否大于0?

查看答案和解析>>

已知函数f(x)=lnxx2. (1)若函数g(x)=f(x)-ax在定义域内为增函数,求实数a的取值范围; (2)在(1)的条件下,若a>1,h(x)=e3x-3aexx∈[0,ln2],求h(x)的极小值; (3)设F(x)=2f(x)-3x2kx(k∈R),若函数F(x)存在两个零点mn(0<m<n),且满足2x0mn,问:函数F(x)在(x0F(x0))处的切线能否平行于x轴?若能,求出该切线方程,若不能,请说明理由.

查看答案和解析>>

(理)已知函数f(x)=ax2+4(a为非零实数),设函数F(x)=f(x),x>0,-f(x),x<0.

(1)若f(-2)=0,求F(x)的表达式;

(2)在(1)的条件下,解不等式1≤|F(x)|≤2;

(3)设mn<0,m+n>0,试判断F(m)+F(n)能否大于0?

(文)杭州风景区有一家自行车租车公司,公司设有A、B、C三个营业站,顾客可以从任何一处营业站租车,并在任何一处营业站还车.根据统计发现租车处与还车处有如下的规律性:

①在A站租车者有30%在A站还车,20%在B站还车,50%在C站还车;

②在B站租车者有70%在A站还车,10%在B站还车,20%在C站还车;

③在C站租车者有40%在A站还车,50%在B站还车,10%在C站还车.

记P(XY)表示“某车由X站租出还至Y站的概率”,P(XY)P(YZ)表示“某车由X站租出还至Y站,再由Y站租出还至Z站的概率”.按以上约定的规则,

(1)求P(CC);

(2)求P(AC)P(CB);

(3)设某辆自行车从A站租出,求此车归还至某站再次出租后,回到A站的概率.

查看答案和解析>>


同步练习册答案