5.在平面解析几何初步的学习过程中.体会用代数方法处理几何问题的思想. 查看更多

 

题目列表(包括答案和解析)

在平面解析几何中,我们学过用方程表示直线、圆等图形,将椭圆上的点满足的条件用坐标表示出来,也可以得到椭圆的方程,试建立适当的坐标系,求长轴为2a,短轴为2bab),焦距为2c的椭圆的方程.

查看答案和解析>>

在平面解析几何中,我们学过用方程表示直线、圆等图形,将椭圆上的点满足的条件用坐标表示出来,也可以得到圆的方程,试建立适当的坐标系,求长轴为2a,短轴为2b(a>b),焦距为2c的椭圆的方程.

查看答案和解析>>

(2007•崇文区二模)如图1 矩形ABCD中,AB=6,BC=2
3
,沿对角线BD将三角形ABD向上折起,使点A移动到点P,使点P在平面BCD上的射影在DC上(如图2).

(Ⅰ)求证:PD⊥面PCB;
(Ⅱ)求二面角P-DB-C的大小的正弦值;
(Ⅲ)求直线CD与平面PBD所成角的大小的正弦值.

查看答案和解析>>

(2008•襄阳模拟)将两块三角板按图甲方式拼好,其中∠B=∠D=90°,∠ACD=30°,∠ACB=45°,AC=2,现将三角板ACD沿AC折起,使D在平面ABC上的射影O恰好在AB上,如图乙.
(1)求证:AD⊥平面BDC;
(2)求二面角D-AC-B的大小.

查看答案和解析>>

如图边长为a的等边三角形ABC的中线AF与中位线DE交于点G,已知△A′DE是△ADE绕DE旋转过程中的一个图形,则下列命题中正确的是
①③
①③

①动点A′在平面ABC上的射影在线段AF上;
②BC∥平面A′DE;
③三棱锥A′-FED的体积有最大值.

查看答案和解析>>


同步练习册答案