3.排列与组合的应用题 历届高考数学试题中.排列与组合部分的试题主要是应用问题.一般都附有某些限制条件,或是限定元素的选择.或是限定元素的位置.这些应用问题的内容和情景是多种多样的而解决它们的方法还是有规律可循的.常用的方法有:一般方法和特殊方法两种. 一般方法有:直接法和间接法 (1)在直接法中又分为两类.若问题可分为互斥各类.据加法原理.可用分类法,若问题考虑先后次序.据乘法原理.可用占位法. (2)间接法一般用于当问题的反面简单明了.据A∪=I且A∩=Æ的原理.采用排除的方法来获得问题的解决. 特殊方法: (1)特元特位:优先考虑有特殊要求的元素或位置后.再去考虑其它元素或位置. (2)捆绑法:某些元素必须在一起的排列.用“捆绑法 .紧密结合粘成小组.组内外分别排列. (3)插空法:某些元素必须不在一起的分离排列用“插空法 .不需分离的站好实位.在空位上进行排列. (4)其它方法. 例5.7人排成一行.分别求出符合下列要求的不同排法的种数. 甲不排两端,(3)甲.乙相邻, (4)甲在乙的左边甲.乙.丙连排, (6)甲.乙.丙两两不相邻. 解:(1)甲排中间属“特元特位 .优先安置.只有一种站法.其余6人任意排列.故共有:1×=720种不同排法. (2)甲不排两端.亦属于“特元特位 问题.优先安置甲在中间五个位置上任何一个位置则有种.其余6人可任意排列有种.故共有·=3600种不同排法. (3)甲.乙相邻.属于“捆绑法 .将甲.乙合为一个“元素 .连同其余5人共6个元素任意排列.再由甲.乙组内排列.故共有·=1400种不同的排法. (4)甲在乙的左边.考虑在7人排成一行形成的所有排列中:“甲在乙左边 与“甲在乙右边 的排法是一一对应的.在不要求相邻时.各占所有排列的一半.故甲在乙的左边的不同排法共有=2520种. (5)甲.乙.丙连排.亦属于某些元素必须在一起的排列.利用“捆绑法 .先将甲.乙.丙合为一个“元素 .连同其余4人共5个“元素 任意排列.现由甲.乙.丙交换位置.故共有·=720种不同排法. (6)甲.乙.丙两两不相邻.属于某些元素必须不在一起的分离排列.用“插空法 .先将甲.乙.丙外的4人排成一行.形成左.右及每两人之间的五个“空 .再将甲.乙.丙插入其中的三个“空 .故共有·=1440种不同的排法. 例6.用0.1.2.3.4.5这六个数字组成无重复数字的五位数.分别求出下列各类数的个数: 比20300大的数, (4)不含数字0.且1.2不相邻的数. 解:(1)奇数:要得到一个5位数的奇数.分成3步.第一步考虑个位必须是奇数.从1.3.5中选出一个数排列个位的位置上有种,第二步考虑首位不能是0.从余下的不是0的4个数字中任选一个排在首位上有种,第三步:从余下的4个数字中任选3个排在中间的3个 数的位置上.由乘法原理共有=388(个). (2)5的倍数:按0作不作个位来分类 第一类:0作个位.则有=120. 第二类:0不作个位即5作个位.则=96. 则共有这样的数为:+=216(个). (3)比20300大的数的五位数可分为三类: 第一类:3xxxx, 4xxxx, 5xxxx有3个, 第二类:21xxx, 23xxx, 24xxx, 25xxx, 的4个, 第三类:203xx, 204xx, 205xx, 有3个.因此.比20300大的五位数共有: 3+4+3=474(个). (4)不含数字0且1.2不相邻的数:分两步完成.第一步将3.4.5三个数字排成一行,第二步将1和2插入四个“空 中的两个位置.故共有=72个不含数字0.且1和2不相邻的五位数. 例7.直线与圆相离.直线上六点A1.A2.A3.A4.A5.A6.圆上四点B1.B2.B3.B4.任两点连成直线.问所得直线最多几条?最少几条? 解:所得直线最多时.即为任意三点都不共线可分为三类:第一类为已知直线上与圆上各取一点连线的直线条数为=24,第二类为圆上任取两点所得的直线条数为=6,第三类为已知直线为1条.则直线最多的条数为N1=++1=31(条). 所得直线最少时.即重合的直线最多.用排除法减去重合的字数较为方便.而重合的直线即是由圆上取两点连成的直线.排除重复.便是直线最少条数: N2=N1-2=31-12=19(条). 查看更多

 

题目列表(包括答案和解析)

排列与组合的联系与区别

(1)排列和组合都是从n个不同元素中取出m(m≤n)个元素,但排列与元素的顺序_________,而组合与元素的顺序_________;

(2)排列数与组合数的关系:_________.

查看答案和解析>>

为调查中学生近视情况,测得某校男生150名中有80名近视,女生140名中有70名近视.在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力(  )

查看答案和解析>>

为调查中学生近视情况,测得某校男生150名中有80名近视,女生140名中有70名近视.在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力

[  ]

A.期望与方差

B.排列与组合

C.独立性检验

D.概率

查看答案和解析>>

为调查中学生近视情况,测得某校男生150名中有80名近视,女生140名中有70名近视.在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力(  )

A.期望与方差  B.排列与组合 C.独立性检验  D.概率

查看答案和解析>>

为调查中学生近视情况,测得某校男生150名中有80名近视,女生140名中有70名近视.在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力(  )

A.独立性检验   B.排列与组合   C.期望与方差  D.概率

查看答案和解析>>


同步练习册答案