题目列表(包括答案和解析)
(本小题满分12分,第一问4分,第二问8分)
如图(20),椭圆的中心为原点O,离心率
,一条准线的方程为
。
(Ⅰ)求该椭圆的标准方程。
(Ⅱ)设动点P满足
,其中M,N是椭圆上的点。直线OM与ON的斜率之积为
。问:是否存在两个定点
,使得
为定值。若存在,求
的坐标;若不存在,说明理由。
(本小题满分10分)
某食品公司为了解某种新品种食品的市场需求,进行了20天的测试,人为地调控每天产品的单价P(元/件):前10天每天单价呈直线下降趋势(第10天免费赠送品尝),后10天呈直线上升,其中4天的单价记录如下表:
|
时间(将第x天记为x) x |
1 |
10 |
11 |
18 |
|
单价(元/件)P |
9 |
0 |
1 |
8 |
而这20天相应的销售量Q(百件/天)与x对应的点(x,Q)在如图所示的半圆上.
![]()
(1)写出每天销售y(元)与时间x(天)的函数关系式y=f(x);
(2)在这20天中哪一天销售收入最高?为使每天销售收入最高,按此测试结果应将单价P设定为多少元为好?(结果精确到1元)
(本小题满分12分,(Ⅰ)小问3分,(Ⅱ)小问5分,(Ⅲ)小问4分)
已知正△
的边长为4,
是
边上的高,
分别是
和
边的中点,现将△
沿
翻折成直二面角
,如图所示.
(I)证明:
∥平面
;
(II)求二面角
的余弦值;
|
|
(本小题满分12分,(Ⅰ)小问3分,(Ⅱ)小问5分,(Ⅲ)小问4分)
已知正△
的边长为4,
是
边上的高,
分别是
和
边的中点,现将△
沿
翻折成直二面角
,如图所示.
(I)证明:
∥平面
;
(II)求二面角
的余弦值;
|
|
(本小题满分12分)最近,李师傅一家三口就如何将手中的10万元钱进行投资理财,提出了三种方案.
第一种方案:李师傅的儿子认为:根据股市收益大的特点,应该将10万元全部用来买股票.据分析预测:投资股市一年可能获利40%,也可能亏损20%(只有这两种可能),且获利的概率为0.5.
第二种方案:李师傅认为:现在股市风险大,基金风险较小,应将10万元全部用来买基金.据分析预测:投资基金一年后可能获利20%,可能损失10%,也可能不赔不赚,且这三种情况发生的概率分别为![]()
第三种方案:李师傅的妻子认为:投资股市、基金均有风险,应将10万元全部存入银行一年,现在存款年利率为4%,存款利息利率为5%.
针对以上三种投资方案,请你为李师傅家选择一种合理的理财方案,并说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com