已知四棱柱ABCD-A1BlClDl的侧棱AA1垂直于底面.底面ABCD为直角梯形.AD∥BC.AB ⊥BC.AD=AB=AA1=2BC . E为 DD1的中点.F为A1D (I)求证:EF∥平面A1BC. (II)求直线EF与平面A1CD所成角的正弦值 查看更多

 

题目列表(包括答案和解析)

(2007•无锡二模)如图,已知四棱柱ABCD-A1B1C1D1的底面ABCD为直角梯形,AB∥CD,AB⊥AD,AB=AD=A1B=2CD,侧面A1ADD1为正方形.
(1)求直线A1A与底面ABCD所成角的大小;
(2)求二面角C-A1B-A正切值的大小;
(3)在棱C1C上是否存在一点P,使得 D1P∥平面A1BC,若存在,试说明点P的位置;若不存在,请说明理由.

查看答案和解析>>

已知四棱柱ABCD-A1B1C1D1中的底面是菱形,且∠DAB=∠A1AB=∠A1AD=60°,AD=1,AA1=a,F为棱BB的中点,M为线段AC的中点.设
AB
=
e1
AD
=
e2
AA1
=
e3
.试用向量法解下列问题:
(1)求证:直线MF∥平面ABCD;
(2)求证:直线MF⊥面A1ACC1
(3)是否存在a,使平面AFC1与平面ABCD所成二面角的平面角是30°?如果存在,求出相应的a 值,如果不存在,请说明理由.(提示:可设出两面的交线)

查看答案和解析>>

如图,已知四棱柱ABCD-A1B1C1D1中,底面ABCD是边长为3的正方形,侧棱AA1长为4,且AA1与A1B1,A1D1的夹角都是60°,则AC1的长等于(  )

查看答案和解析>>

已知四棱柱ABCD-A1B1C1D1中,侧棱AA1⊥底面ABCD,AA1=2,底面四边形ABCD的边长均大于2,且∠DAB=45°,点P在底面ABCD内运动且在AB,AD上的射影分别为M,N,若|PA|=2,则三棱锥P-D1MN体积的最大值为(  )

查看答案和解析>>

(本小题满分12分)如图,已知四棱柱ABCD—A1B1C1D1中,A1D⊥底面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2。

   (I)求证:C1D//平面ABB1A1

   (II)求直线BD1与平面A1C1D所成角的正弦值;

   (Ⅲ)求二面角D—A1C1—A的余弦值。

 

 

 

查看答案和解析>>


同步练习册答案