19. 解:(1)设椭圆的半焦距为c. 依题意 解得 由 2分 所求椭圆方程为 3分 (2) 设. 其坐标满足方程 消去并整理得 4分 则(*) 5分 故 6分 经检验满足式(*)式 8分 (3)由已知. 可得 9分 将代入椭圆方程. 整理得 10分 11分 12分 当且仅当. 即时等号成立. 经检验.满足(*)式 当时. 综上可知13分 当|AB最大时.的面积最大值 14分 查看更多

 

题目列表(包括答案和解析)

(2007·广东)设椭圆的半焦距为c,直线l(0a)(b0),已知原点到直线l的距离等于,则椭圆的离心率为

[  ]

A

B

C

D

查看答案和解析>>

已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点.

(Ⅰ)求椭圆的方程;

(Ⅱ)是否存过点(2,1)的直线与椭圆相交于不同的两点,满足?若存在,求出直线的方程;若不存在,请说明理由.

【解析】第一问利用设椭圆的方程为,由题意得

解得

第二问若存在直线满足条件的方程为,代入椭圆的方程得

因为直线与椭圆相交于不同的两点,设两点的坐标分别为

所以

所以.解得。

解:⑴设椭圆的方程为,由题意得

解得,故椭圆的方程为.……………………4分

⑵若存在直线满足条件的方程为,代入椭圆的方程得

因为直线与椭圆相交于不同的两点,设两点的坐标分别为

所以

所以

因为,即

所以

所以,解得

因为A,B为不同的两点,所以k=1/2.

于是存在直线L1满足条件,其方程为y=1/2x

 

查看答案和解析>>

解答题

设椭圆的对称轴是坐标轴,短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆长轴端点的最短距离为,求此椭圆方程.

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0).
(1)设椭圆的半焦距c=1,且a2,b2,c2成等差数列,求椭圆C的方程;
(2)设(1)中的椭圆C与直线y=kx+1相交于P、Q两点,求
OP
OQ
的取值范围;
(3)设A为椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴的一个端点,B为椭圆短轴的一个端点,F为椭圆C的一个焦点,O为坐标原点,记∠BFO=θ.当椭圆C同 时满足下列两个条件:①
π
6
≤θ≤
π
4
;②O到直线AB的距离为
2
2
,求椭圆长轴长的取值范围

查看答案和解析>>

精英家教网已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0).
(1)设椭圆的半焦距c=1,且a2,b2,c2成等差数列,求椭圆C的方程;
(2)对(1)中的椭圆C,直线y=x+1与C交于P、Q两点,求|PQ|的值;
(3)设B为椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的短轴的一个端点,F为椭圆C的一个焦点,O为坐标原点,记∠BFO=θ.当椭圆C同时满足下列两个条件:①
π
6
≤θ≤
π
4
;②a2+b2=2a2b2.求椭圆长轴的取值范围.

查看答案和解析>>


同步练习册答案