(I)以O点为原点.指北的方向为y轴建立直角坐标系.则直线OZ的方程为y=3x. 设点A(x0.y0).则x0=asinβ=3a.y0=acosβ=2a.即A. 又B(m.0).则直线AB的方程是y=. 由此得到C点坐标为. ,[9分] (II). ∴当且仅当时等号成立.[13分] 答:征调海里处的船只时.补给最适宜. [14分] 查看更多

 

题目列表(包括答案和解析)

若A、B、C是平面内以O点为圆心,半径为1的圆上不同三个点,且OA⊥OB,又存在实数m,n,使
OC
=m
OA
+n
OB
,则实数m,n的x关系为(  )

查看答案和解析>>

已知抛物线C:x2=2my(m>0)和直线l:y=kx-m没有公共点(其中k、m为常数),动点P是直线l上的任意一点,过P点引抛物线C的两条切线,切点分别为M、N,且直线MN恒过点Q(k,1).
(1)求抛物线C的方程;
(2)已知O点为原点,连接PQ交抛物线C于A、B两点,证明:S△OAP•S△OBQ=S△OAQ•S△OBP

查看答案和解析>>

在直角坐标系xOy中,直线l的参数方程为
x=-
5
-
2
2
t
y=
5
+
2
2
t
(t为参数)若以O点为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为ρ=4cos θ.
(1)求曲线C的直角坐标方程及直线l的普通方程;
(2)将曲线C上各点的横坐标缩短为原来的
1
2
,再将所得曲线向左平移1个单位,得到曲线CΘ,求曲线CΘ上的点到直线l的距离的最小值.

查看答案和解析>>

已知抛物线C:x2=2my(m>0)和直线l:y=x-m没有公共点(其中m为常数).动点P是直线l上的任意一点,过P点引抛物线C的两条切线,切点分别为M、N,且直线MN恒过点Q(1,1).
(1)求抛物线C的方程;
(2)已知O点为原点,连接PQ交抛物线C于A、B两点,求
|PA|
|
PB|
-
|
QA|
|
QB|
的值.

查看答案和解析>>

(本小题满分12分)

某公园的大型中心花园的边界为椭圆,花园内种植各种花草. 为增强观赏性,在椭圆内以其

中心为直角顶点且关于中心对称的两个直角三角形内种植名贵花草(如图),并以该直角三角

形斜边开辟观赏小道(其中的一条为线段). 某园林公司承接了该中心花园的施工建设,

在施工时发现,椭圆边界上任意一点到椭圆两焦点的距离和为4(单位:百米),且椭圆上点

到焦点的最近距离为1(单位:百米).

(Ⅰ)以椭圆中心为原点建立如图的坐标系,求该椭圆的标准方程;

(Ⅱ)请计算观赏小道的长度(不计小道宽度)的最大值.

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>


同步练习册答案