21.已知椭圆C的中心在坐标原点,焦点在x轴上,离心率.直线:与椭圆C相交于两点, 且.(1)求椭圆C的方程,(2)点P(.0).A.B为椭圆C上的动点,当时,求证:直线AB恒过一个定点.并求出该定点的坐标. 查看更多

 

题目列表(包括答案和解析)

已知椭圆C的中心在坐标原点,左顶点A(-2,0),离心率e=
1
2
,F为右焦点,过焦点F的直线交椭圆C于P、Q两点(不同于点A).
(1)求椭圆C的方程.
(2)当|PQ|=
24
7
时,求直线PQ的方程.
(3)判断△ABC能否成为等边三角形,并说明理由.

查看答案和解析>>

已知椭圆C的中心在坐标原点,离心率e=
2
2
,且其中一个焦点与抛物线y=
1
4
x2
的焦点重合.
(1)求椭圆C的方程;
(2)过点S(-
1
3
,0)的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过点T,若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

已知椭圆C的中心在坐标原点,两焦点F1,F2在x轴上,离心率为
1
2
,椭圆的短轴端点和焦点所组成的四边
形周长等于8.
(1)求椭圆C的方程;
(2)M、N是直线x=4上的两个动点,且
F1M
-
F2N
=0.设E是以MN为直径的圆,试判断原点O与圆E的位置关系.

查看答案和解析>>

已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是抛物线y=
1
4
x2
的焦点,离心率为
2
5
5

(1)求椭圆C的标准方程;
(2)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若
MA
=λ1
AF
MB
=λ2
BF
,求证:λ12=-10.

查看答案和解析>>

已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.
(1)求椭圆C的标准方程;
(2)D为椭圆C的右顶点,设A是椭圆上异于D的一动点,作AD的垂线交椭圆与点B,求证:直线AB过定点,并求出该定点的坐标.

查看答案和解析>>


同步练习册答案