题目列表(包括答案和解析)
(本小题满分16分)已知动点
到定直线
:
的距离与点
到定点
之比为
.
(1)求动点
的轨迹
的方程;
(2)若点N为轨迹
上任意一点(不在x轴上),过原点O作直线AB交(1)中轨迹C于点A、B,且直线AN、BN的斜率都存在,分别为
、
,问
是否为定值?
(3)若点M为圆O:
上任意一点(不在x轴上),过M作圆O的切线,交直线
于点Q,问MF与OQ是否始终保持垂直关系?
![]()
(本小题满分16分)已知动点
到定直线
:
的距离与点
到定点
之比为
.
(1)求动点
的轨迹
的方程;
(2)若点N为轨迹
上任意一点(不在x轴上),过原点O作直线AB交(1)中轨迹C于点A、B,且直线AN、BN的斜率都存在,分别为
、
,问
是否为定值?
(3)若点M为圆O:
上任意一点(不在x轴上),过M作圆O的切线,交直线
于点Q,问MF与OQ是否始终保持垂直关系?
![]()
(本小题满分16分)
已知正三角形OAB的三个顶点都在抛物线
上,其中O为坐标原点,设圆C是
的外接圆(点C为圆心)(1)求圆C的方程;(2)设圆M的方程为
,过圆M上任意一点P分别作圆C的两条切线PE、PF,切点为E、F,求
的最大值和最小值
(本小题满分16分)已知函数
(a>0,且a≠1),其中为常数.如果
是增函数,且
存在零点(
为
的导函数).
(Ⅰ)求a的值;(Ⅱ)设A(x1,y1)、B(x2,y2)(x1<x2)是函数y=g(x)的图象上两点,
(
为
的导函数),证明:
.
(本小题满分16分)
已知数列
满足
,当
,
时,
.
⑴求数列
的通项公式;
⑵是否存在
,使得
时,不等式
对任意实数
恒成立?若存在,求出
的最小值;若不存在,请说明理由.
⑶在
轴上是否存在定点
,使得三点
、
、
(其中
、
、
是互不相等的正整数且
)到定点
的距离相等?若存在,求出点
及正整数
、
、
;若不存在,说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com