24. 令.即可 .当时.取最小值3 即可. 故. -------------10分 查看更多

 

题目列表(包括答案和解析)

已知函数 R).

(Ⅰ)若 ,求曲线  在点  处的的切线方程;

(Ⅱ)若  对任意  恒成立,求实数a的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。

第一问中,利用当时,

因为切点为(), 则,                 

所以在点()处的曲线的切线方程为:

第二问中,由题意得,即可。

Ⅰ)当时,

,                                  

因为切点为(), 则,                  

所以在点()处的曲线的切线方程为:.    ……5分

(Ⅱ)解法一:由题意得,.      ……9分

(注:凡代入特殊值缩小范围的均给4分)

,           

因为,所以恒成立,

上单调递增,                            ……12分

要使恒成立,则,解得.……15分

解法二:                 ……7分

      (1)当时,上恒成立,

上单调递增,

.                  ……10分

(2)当时,令,对称轴

上单调递增,又    

① 当,即时,上恒成立,

所以单调递增,

,不合题意,舍去  

②当时,, 不合题意,舍去 14分

综上所述: 

 

查看答案和解析>>

等差数列的各项均为正数,,前项和为为等比数列,,且 .(Ⅰ)求数列的通项公式;
(Ⅱ)令
①求;②当时,证明:.

查看答案和解析>>

已知向量,且,令函数

(1)当时,求的递增区间;

(2)当时,的值域是,求的值。

查看答案和解析>>

已知函数f(x)是R上的偶函数,且在区间上是增函数.令,则

[  ]
A.

b<a<c

B.

c<b<a

C.

b<c<a

D.

a<b<c

查看答案和解析>>

将用二分法求方程x2-2=0的近似解(精确度为0.005)的一个算法补充完整.

(1)令f(x)=x2-2,因为f(1)<0,f(2)>0,所以设x1=1,x2=2.

(2)令m=  ①  ,判断f(m)是否为0.若是,则m为所求;否则,将继续判断  ②  

(3)若  ③  ,则令x1=m;否则令x2=m.

(4)判定  ④  <0.005是否成立.若成立,则x1,x2之间的任意取值均为满足条件的近似解;若不成立,则  ⑤  

查看答案和解析>>


同步练习册答案