题目列表(包括答案和解析)
.(本小题满分14分)
设函数
.其中
为常数.
(Ⅰ)证明:对任意
,
的图象恒过定点;
(Ⅱ)
设
,若
为定义域
上的增函数,求
的最大值;
(Ⅲ)当
时,函数
是否存在极值?若存在,求出极值;若不存在,说明理由.
(本小题满分14分)已知定义在实数集上的函数fn(x)=xn,n∈N*,其导函数记为
,且满足![]()
,a,x1,x2为常数,x1≠x2.
(1)试求a的值;
(2)记函数![]()
,x∈(0,e],若F(x)的最小值为6,求实数b的值;
(3)对于(2)中的b,设函数
,A(x1,y1),B(x2,y2)(x1<x2)是函数g(x)图象上两点,若
,试判断x0,x1,x2的大小,并加以证明.
(本小题满分14分)
设函数
,函数
有唯一的零点,其中实数
为常数,
,
.
(Ⅰ)求
的表达式;(Ⅱ)求
的值;
(Ⅲ)若
且
,求证:
.
(本小题满分14分)
已知二次函数
,关于
的不等式
的解集为
,其中
为非零常数.设
.
(1)求
的值;
(2)
R
如何取值时,函数![]()
![]()
存在极值点,并求出极值点;
(3)若
,且![]()
,求证:
N![]()
(本小题满分14分)已知向量
,
,设函数![]()
的图象关于直线
对称,其中
,
为常数,且
.
(1)求函数
的最小正周期;
(2)若
的图象经过点
,求函数
在区间
上的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com