(1)当0<t≤10时. 是增函数.且f(10)=240 当20<t≤40时.是减函数.且f(20)=240 所以.讲课开始10分钟.学生的注意力最集中.能持续10分钟.(3)当0<t≤10时.令.则t=4 当20<t≤40时.令.则t≈28.57 则学生注意力在180以上所持续的时间28.57-4=24.57>24 从而教师可以第4分钟至第28.57分钟这个时间段内将题讲完. 查看更多

 

题目列表(包括答案和解析)

已知某公司生产某品牌服装的年固定成本为10万元,每生产千件需另投入2.7万元,设该公司年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)满足:(1)当0<x≤10时销售收入与生产服装的平方成一次关系,x=3千件时销售收入为10.5万元;x=9千件时销售收入为8.1万元.(2)当x>10时销售收入与生产服装的关系式为R(x)=
108
x
-
1000
3x2

(1)写出年利润W(万元)关于年出品x(千件)的函数解析式;
(2)年产量为多少千件时,该公式在这一品牌服装的生产中所获年利润最大?

查看答案和解析>>

设f(x)是定义在[-1,1]上的奇函数,当x∈(0,1]时,f(x)=2tx-4x3(t为常数)
(1)求f(x)的表达式;
(2)当0<t≤6时,用定义证明f(x)在[-
6t
6
6t
6
]
上单调递增;
(3)当t>6时,是否存在t使f(x)的图象的最高点落在直线y=12上.若存在,求出t的值,若不存在,说明理由.

查看答案和解析>>

某隧道长2150m,通过隧道的车速不能超过20m/s.一列有55辆车身长都为10m的同一车型的车队(这种型号的车能行驶的最高速为40m/s)匀速通过该隧道,设车队的速度为xm/s,根据安全和车流的需要,当0<x≤10时,相邻两车之间保持20m的距离;当10<x≤20时,相邻两车之间保持(
1
6
x2+
1
3
x)
m的距离.自第1辆车车头进入隧道至第55辆车尾离开隧道所用的时间为y(s).
(1)将y表示为x的函数;
(2)求车队通过隧道时间y的最小值及此时车队的速度.(
3
≈1.73)

查看答案和解析>>

下列结论正确的是(     )

A.当x>0且x≠1时,
B.当x>0时,
C.当x≥2时,
D.当0<x≤2时,无最大值

查看答案和解析>>

已知a>0,函数f(x)=ax-bx2,

(1)当b>0时,若对任意x∈R都有f(x)≤1,证明:a≤2

(2)当b>1时,证明:对任意x∈[0, 1], |f(x)|≤1的充要条件是:b-1≤a≤2

(3)当0<b≤1时,讨论:对任意x∈[0, 1], |f(x)|≤1的充要条件。

查看答案和解析>>


同步练习册答案