解依题:.-2分 做差得 得 -4分 又因为 k+s-5#u 解得 -6分 故-9分 故-12分 查看更多

 

题目列表(包括答案和解析)

有一道数学题含有两个小题,全做对者得4分,只做对一小题者得2分,不做或全错者得0分.某同学做这道数学题得4分的概率为a,得2分的概率为b,得0分的概率为c,其中a,b,c∈(0,1),且该同学得分ξ的数学期望Eξ=2,则
1
a
+
2
b
的最小值是(  )
A、2B、4C、6D、8

查看答案和解析>>

(本小题满分l 2分)某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x元时,销售量可达到15一O.1x万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为l0.假设不计其它成本,即销售每套丛书的利润 = 售价 一 供货价格.问:

(I)每套丛书定价为100元时,书商能获得的总利润是多少万元?

(Ⅱ)每套丛书定价为多少元时,单套丛书的利润最大?

 

查看答案和解析>>

已知正项数列的前n项和满足:

(1)求数列的通项和前n项和

(2)求数列的前n项和

(3)证明:不等式  对任意的都成立.

【解析】第一问中,由于所以

两式作差,然后得到

从而得到结论

第二问中,利用裂项求和的思想得到结论。

第三问中,

       

结合放缩法得到。

解:(1)∵     ∴

      ∴

      ∴   ∴  ………2分

      又∵正项数列,∴           ∴ 

又n=1时,

   ∴数列是以1为首项,2为公差的等差数列……………3分

                             …………………4分

                   …………………5分 

(2)       …………………6分

    ∴

                          …………………9分

(3)

      …………………12分

        

   ∴不等式  对任意的都成立.

 

查看答案和解析>>

(本小题满分1 2分)

如图,四边形ABCD中,,AD∥BC,AD =6,BC =4,AB =2,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABCD平面EFDC,设AD中点为P.

( I )当E为BC中点时,求证:CP//平面ABEF

(Ⅱ)设BE=x,问当x为何值时,三棱锥A-CDF的体积有最大值?并求出这个最大值。

 

查看答案和解析>>

已知函数, 其中.

(1)当时,求曲线在点处的切线方程;

(2)当时,求曲线的单调区间与极值.

【解析】第一问中利用当时,

,得到切线方程

第二问中,

对a分情况讨论,确定单调性和极值问题。

解: (1) 当时,

………………………….2分

   切线方程为: …………………………..5分

 (2)

…….7

分类: 当时, 很显然

的单调增区间为:  单调减区间: ,

, …………  11分

的单调减区间:  单调增区间: ,

,

 

查看答案和解析>>


同步练习册答案