18. (1)由题设.可得=- 3分 则-sinBcosC=2cosBsinA+cosBsinC. sinBcosC+cosBsinC+2cosBsinA=0. sin(B+C)+2cosB sinA=0. 7分 sinA+2cosB sinA=0. 因为sinA≠0 .所以cosB=- .所以B=120o.10分 (2)∵b2=a2+c2-2accosB.∴19=(a+c)2-2ac-2accos120o.∴ac=6. 12分 又a+c=5.可解得或 14分 查看更多

 

题目列表(包括答案和解析)

已知,设是方程的两个根,不等式对任意实数恒成立;函数有两个不同的零点.求使“P且Q”为真命题的实数的取值范围.

【解析】本试题主要考查了命题和函数零点的运用。由题设x1+x2=a,x1x2=-2,

∴|x1-x2|=.

当a∈[1,2]时,的最小值为3. 当a∈[1,2]时,的最小值为3.

要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判别式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

可得到要使“P∧Q”为真命题,只需P真Q真即可。

解:由题设x1+x2=a,x1x2=-2,

∴|x1-x2|=.

当a∈[1,2]时,的最小值为3.

要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判别式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

综上,要使“P∧Q”为真命题,只需P真Q真,即

解得实数m的取值范围是(4,8]

 

查看答案和解析>>

设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分dx.先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…,xN和y1,y2,…,yN,由此得到N个点(xi,yi)(i=1,2,…,N),再数出其中满足yi≤f(xi)(i=1,2,…,N)的点的个数N1,那么由随机模拟方法可得积分dx的近似值为    .

查看答案和解析>>

设函数y=f(x)在区间[0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S.先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…,xN和y1,y2,…,yN,由此得到N个点(xi,yi)(i=1,2,…,N).再数出其中满足yif(xi)(i=1,2,…,N)的点数N1,那么由随机模拟方法可得S的近似值为    .

查看答案和解析>>

已知等比数列中,,且,公比,(1)求;(2)设,求数列的前项和

【解析】第一问,因为由题设可知

 故

,又由题设    从而

第二问中,

时,

时, 

时,

分别讨论得到结论。

由题设可知

 故

,又由题设   

从而……………………4分

(2)

时,……………………6分

时,……8分

时,

 ……………………10分

综上可得 

 

查看答案和解析>>

在平面直角坐标系中,曲线的参数方程为

   是曲线上的动点.

  (1)求线段的中点的轨迹的直角坐标方程;

  (2) 以坐标原点为极点,轴的正半轴为极轴建立极坐标系,若直线的极坐标方程为,求点到直线距离的最大值.

【解析】第一问利用设曲线上动点,由中点坐标公式可得

所以点的轨迹的参数方程为

消参可得

第二问,由题可知直线的直角坐标方程为,因为原点到直线的距离为

所以点到直线的最大距离为

 

查看答案和解析>>


同步练习册答案