解:(1)证明:取AD中点E.连接ME.NE. 由已知M.N分别是PA.BC的中点. ∴ME∥PD.NE∥CD 又ME.NE平面MNE.MENE=E. 所以.平面MNE∥平面PCD. 2分 所以.MN∥平面PCD 3分 (2)证明:因为PD⊥平面ABCD. 所以PD⊥DA.PD⊥DC. 在矩形ABCD中.AD⊥DC. 如图.以D为坐标原点. 射线DA.DC.DP分别为 轴.轴.轴 正半轴建立空间直角坐标系 4分 则D.A(.0.0). B(.1.0). P(0.0.) 6分 所以(.0.).. 7分 ∵·=0.所以MC⊥BD 8分 (3)解:因为ME∥PD.所以ME⊥平面ABCD.ME⊥BD.又BD⊥MC. 所以BD⊥平面MCE, 所以CE⊥BD.又CE⊥PD.所以CE⊥平面PBD. 9分 由已知.所以平面PBD的法向量 10分 M为等腰直角三角形PAD斜边中点.所以DM⊥PA. 又CD⊥平面PAD.AB∥CD.所以AB⊥平面PAD.AB⊥DM. 所以DM⊥平面PAB. 11分 所以平面PAB的法向量(-.0.) 12分 设二面角A-PB-D的平面角为θ. 则. 所以.二面角A-PB-D的余弦值为. 13分 查看更多

 

题目列表(包括答案和解析)

以下关于不等式(x-a)(x-b)<0的解集说法正确的是

[  ]

A.解集为{x|a<x<b}或{x|b<x<a}   B.解集为{x|a<x<b}

C.解集为{x|b<x<a}           D.解集有可能为

查看答案和解析>>

以下关于不等式(x-a)(x-b)<0的解集说法正确的是

[  ]

A.解集为{x|a<x<b}或{x|b<x<a}   B.解集为{x|a<x<b}

C.解集为{x|b<x<a}           D.解集有可能为

查看答案和解析>>

已知奇函数fx)的定义域为(-00,+),且fx)在(0,+)上是增函数,f1)=0.函数gx)=mx12mx∈[01]

  ()证明函数fx)在(-0)上是增函数;

  ()解关于x的不等式fx)<0

  ()当x∈[01]时,求使得gx)<0f [gx]0恒成立的m的取值范围.

 

查看答案和解析>>

已知奇函数fx)的定义域为(-∞,0)(0,+∞),且fx)在(0,+∞)上是增函数,f(1)=0.函数gx)=mx+1-2mx∈[0,1].

  (Ⅰ)证明函数fx)在(-∞,0)上是增函数;

  (Ⅱ)解关于x的不等式fx)<0;

  (Ⅲ)当x∈[0,1]时,求使得gx)<0且f [gx)]<0恒成立的m的取值范围.

查看答案和解析>>

已知奇函数fx)的定义域为(-∞,0)(0,+∞),且fx)在(0,+∞)上是增函数,f(1)=0.函数gx)=mx+1-2mx∈[0,1].

  (Ⅰ)证明函数fx)在(-∞,0)上是增函数;

  (Ⅱ)解关于x的不等式fx)<0;

  (Ⅲ)当x∈[0,1]时,求使得gx)<0且f [gx)]<0恒成立的m的取值范围.

查看答案和解析>>


同步练习册答案