19. 设函数在上的导函数为.在上的导函数为.若在上.恒成立.则称函数在上为“凸函数 .已知. (Ⅰ)若为区间上的“凸函数 .试确定实数的值, (Ⅱ)若当实数满足时.函数在上总为“凸函数 .求的最大值. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)设函数上的导函数为上的导函数为,若在上,恒成立,则称函数上为“凸函数”.已知

(1)若为区间上的“凸函数”,试确定实数的值;

(2)若当实数满足时,函数上总为“凸函数”,求的最大值.

查看答案和解析>>

(本小题满分14分)
设函数上的导函数为上的导函数为,若在上,恒成立,则称函数上为“凸函数”.已知
(1)若为区间上的“凸函数”,试确定实数的值;
(2)若当实数满足时,函数上总为“凸函数”,求的最大值.

查看答案和解析>>

(本小题满分14分)

设函数上的导函数为上的导函数为,若在上,恒成立,则称函数上为“凸函数”.已知

(1)若为区间上的“凸函数”,试确定实数的值;

(2)若当实数满足时,函数上总为“凸函数”,求的最大值.

 

 

查看答案和解析>>

(本小题满分14分)
设函数上的导函数为上的导函数为,若在上,恒成立,则称函数上为“凸函数”.已知
(1)若为区间上的“凸函数”,试确定实数的值;
(2)若当实数满足时,函数上总为“凸函数”,求的最大值.

查看答案和解析>>

(本小题满分14分)

设曲线表示的导函数。

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)求函数的极值;

(Ⅲ)当时,对于曲线上的不同两点,是否存在

唯一,使直线的斜率等于?并证明你的结论。

查看答案和解析>>


同步练习册答案