用一个不平行于圆柱底面的平面截圆柱成一个“斜截圆柱 .如图所示.已知圆柱底面半径为r.圆柱的母线被平面截下的线段称为“部分母线 . 斜截圆柱面上最短的部分母线AD=r.最长的部分母线BC=3r,A点在底面圆周上沿逆时针方向旋转一个角到.对应一条部分母线.再旋转角到.对应一条部分母线-,这样可以得到一系列部分母线, (1) 当时.求的长度, (2) 当时.尝试求的长度.请写出的一般表达式 (3) 将斜截圆柱侧面从AD截开.并沿与AD垂直的水平方向展开.得到一个平面图形M,试研究该侧面展开图M的几何特征.提出两个你认为最有价值的问题.并予以解答. 查看更多

 

题目列表(包括答案和解析)

用一个不平行于底面的平面截一个底面直径为40的圆柱,截得如图几何体,若截面椭圆的长轴为50,几何体最短的母线长为70,则此几何体的体积为   ▲  

 

查看答案和解析>>

用一个不平行于底面的平面截一个底面直径为40的圆柱,截得如图几何体,若截面椭圆的长轴为50,几何体最短的母线长为70,则此几何体的体积为   ▲  

查看答案和解析>>

用一个不平行于底面的平面截一个底面直径为40的圆柱,截得如图几何体,若截面椭圆的长轴为50,几何体最短的母线长为70,则此几何体的体积为   ▲  

查看答案和解析>>

用一个不平行于底面的平面截一个底面直径为40的圆柱,截得如图几何体,若截面椭圆的长轴为50,几何体最短的母线长为70,则此几何体的体积为   ▲  

查看答案和解析>>


同步练习册答案