19.证(Ⅰ)因为侧面.故 在△BC1C中. 由余弦定理有 [ 故有 而 且平面 --4分 (Ⅱ)由 从而 且 故 不妨设 .则.则 又 则 在直角三角形BEB1中有 从而[ 故为的中点时. --9分 法二:以为原点为轴. 设.则 由得 即 化简整理得 或 当时与重合不满足题意 当时为的中点 故为的中点使 --9分 (Ⅲ)取的中点.的中点. 的中点.的中点 连则.连则. 连则 连则.且为矩形. 又 故为所求二面角的平面角 在中. --14分 法二:由已知. 所以二面角的平面角的大小为向量与的夹角 因为 故 --14分 查看更多

 

题目列表(包括答案和解析)

已知函数.

(Ⅰ)若函数依次在处取到极值.求的取值范围;

(Ⅱ)若存在实数,使对任意的,不等式 恒成立.求正整数的最大值.

【解析】第一问中利用导数在在处取到极值点可知导数为零可以解得方程有三个不同的实数根来分析求解。

第二问中,利用存在实数,使对任意的,不等式 恒成立转化为,恒成立,分离参数法求解得到范围。

解:(1)

(2)不等式 ,即,即.

转化为存在实数,使对任意的,不等式恒成立.

即不等式上恒成立.

即不等式上恒成立.

,则.

,则,因为,有.

在区间上是减函数。又

故存在,使得.

时,有,当时,有.

从而在区间上递增,在区间上递减.

[来源:]

所以当时,恒有;当时,恒有

故使命题成立的正整数m的最大值为5

 

查看答案和解析>>

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)证明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.

 

【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)证明:易得于是,所以

(2) ,设平面PCD的法向量

,即.不防设,可得.可取平面PAC的法向量于是从而.

所以二面角A-PC-D的正弦值为.

(3)设点E的坐标为(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)证明:由,可得,又由,,故.又,所以.

(2)如图,作于点H,连接DH.由,,可得.

因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值为.

(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

5、三角形ABC是等边三角形,点D、E分别在BC,AC上,且BD=CE,AD与BE相交于点M,试证:BD2=ADxDM.

查看答案和解析>>

如图,在三棱锥S-ABC中,侧面SAC与底面ABC垂直,E,O分别是SC、AC的中点,SA=SC=
2
,BC=
1
2
AC,∠ASC=∠ACB=90°.
(1)求证:OE∥平面SAB;
(2)若点F在线段BC上,问:无论F在BC的何处,是否都有OE⊥SF?请证明你的结论;
(3)求二面角B-AS-C的平面角的余弦值.

查看答案和解析>>

14、在平面几何中,有射影定理:“在△ABC中,AB⊥AC,点A在BC边上的射影为D,有AB2=BD•BC.”类比平面几何定理,研究三棱锥的侧面面积与射影面积、底面面积的关系,可以得出的正确结论是:“在三棱锥A-BCD中,AD⊥平面ABC,点A在底面BCD上的射影为O,则有
S△ABC2=S△BCO•S△BCD

查看答案和解析>>


同步练习册答案