19.解:(Ⅰ)设数列的公差为.数列的公比为 由题意得 -----------------------2分 解得 ---------------------5分 (Ⅱ)由 知 两式相减:------------8分 -------------------------10分 当时..适合上式 即是等比数列-------------------------12分 查看更多

 

题目列表(包括答案和解析)

已知为数列的前项和,.

⑴设数列中,,求证:是等比数列;

⑵设数列中,,求证:是等差数列;

⑶求数列的通项公式及前项和.

【解题思路】由于中的项与中的项有关,且,可利用的关系作为切入点.

查看答案和解析>>

已知为数列的前项和,.
⑴设数列中,,求证:是等比数列;
⑵设数列中,,求证:是等差数列;
⑶求数列的通项公式及前项和.
【解题思路】由于中的项与中的项有关,且,可利用的关系作为切入点.

查看答案和解析>>

已知数列是公差不为零的等差数列,,且成等比数列。

⑴求数列的通项公式;

⑵设,求数列的前项和

【解析】第一问中利用等差数列的首项为,公差为d,则依题意有:

第二问中,利用第一问的结论得到数列的通项公式,

,利用裂项求和的思想解决即可。

 

查看答案和解析>>

在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,.(Ⅰ)求an 与bn;(Ⅱ)设数列{cn}满足,求{cn}的前n项和Tn.

【解析】本试题主要是考查了等比数列的通项公式和求和的运用。第一问中,利用等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,,可得,解得q=3或q=-4(舍),d=3.得到通项公式故an=3+3(n-1)=3n, bn=3 n-1.     第二问中,,由第一问中知道,然后利用裂项求和得到Tn.

解: (Ⅰ) 设:{an}的公差为d,

因为解得q=3或q=-4(舍),d=3.

故an=3+3(n-1)=3n, bn=3 n-1.                       ………6分

(Ⅱ)因为……………8分

 

查看答案和解析>>

已知是等差数列,其前n项和为Sn是等比数列,且.

(Ⅰ)求数列的通项公式;

(Ⅱ)记,证明).

【解析】(1)设等差数列的公差为d,等比数列的公比为q.

,得.

由条件,得方程组,解得

所以.

(2)证明:(方法一)

由(1)得

     ①

   ②

由②-①得

(方法二:数学归纳法)

①  当n=1时,,故等式成立.

②  假设当n=k时等式成立,即,则当n=k+1时,有:

   

   

,因此n=k+1时等式也成立

由①和②,可知对任意成立.

 

查看答案和解析>>


同步练习册答案