设函数 ①在区间[-2.6]上画出函数的图象, ②设集合..试判断集合之间的关系.并给出证明, ③当时.求证:在区间[-1.5]上.的图象位于函数图象的上方. 查看更多

 

题目列表(包括答案和解析)

设函数f(x)=|x2-4x-5|.
(1)在区间[-2,6]上画出函数f(x)的图象;
(2)设集合A={x|f(x)≥5},B=(-∞,-2]∪[0,4]∪[6,+∞).试判断集合A和B之间的关系(要写出判断过程);
(3)当k>2时,求证:在区间[-1,5]上,y=kx+3k的图象位于函数f(x)图象的上方.

查看答案和解析>>

设函数f(x)=|x2-4x-5|,g(x)=k.
(1)在区间[-2,6]上画出函数f(x)的图象.
(2)若函数f(x)与g(x)有3个交点,求k的值;
(3)试分析函数?(x)=|x2-4x-5|-k的零点个数.

查看答案和解析>>

设函数f(x)=|x2-4x-5|,x∈R.
(1)在区间[-2,6]上画出函数f(x)的图象;
(2)写出该函数在R上的单调区间.

查看答案和解析>>

设函数f(x)=|x2-2x|.
(1)在区间[-2,6]上画出函数f(x)的图象;
(2)根据图象写出该函数在[-2,6]上的单调区间;
(3)方程f(x)=a有两个不同的实数根,求a的取值范围.(只写答案即可)

查看答案和解析>>

设函数f(x)=|x2-2x|.
(1)在区间[-2,6]上画出函数f(x)的图象;
(2)根据图象写出该函数在[-2,6]上的单调区间;
(3)方程f(x)=a在区间[-2,6]有两个不同的实数根,求a的取值范围.

查看答案和解析>>


同步练习册答案