21.(1).不具有性质,具有性质,证略. (2)..成等比数列. 查看更多

 

题目列表(包括答案和解析)

已知等差数列{ an }中,前n项和Sn满足:S10+S20=1590,S10-S20=-930.
(1)求数列{ an }的通项公式以及前n项和公式;
(2)是否存在三角形同时具有以下两个性质,如果存在,请求出三角形的三边长和b值;如果不存在,请说明理由.
①三边是数列{ an+b}中的连续三项,其中b∈N*;
②最小角是最大角的一半.

查看答案和解析>>

(文)椭圆具有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.今有一个水平放置的椭圆形台球盘,点A、B是它的焦点,长轴长为2a,焦距为2c,静放在点A的小球(小球的半径忽略不计)从点A沿直线出发,经椭圆壁反射后第一次回到点A时,小球经过的路程是
4a或2(a-c)或2(a+c)
4a或2(a-c)或2(a+c)

查看答案和解析>>

在同一坐标系中,函数y=sinx与y=cosx的图象不具有下述哪种性质(  )
A、y=sinx的图象向左平移
π
2
个单位后,与y=cosx的图象重合
B、y=sinx与y=cosx的图象各自都是中心对称曲线
C、y=sinx与y=cosx的图象关于直线x=
π
4
互相对称
D、y=sinx与y=cosx在某个区间[x0,x0+π]上都为增函数

查看答案和解析>>

对于各项均为整数的数列{an},如果满足ai+i(i=1,2,3,…)为完全平方数,则称数列{an}具有“P性质”;
不论数列{an}是否具有“P性质”,如果存在与{an}不是同一数列的{bn},且{bn}同时满足下面两个条件:①b1,b2,b3,…,bn是a1,a2,a3,…,an的一个排列;②数列{bn}具有“P性质”,则称数列{an}具有“变换P性质”.
(Ⅰ)设数列{an}的前n项和Sn=
n3
(n2-1)
,证明数列{an}具有“P性质”;
(Ⅱ)试判断数列1,2,3,4,5和数列1,2,3,…,11是否具有“变换P性质”,具有此性质的数列请写出相应的数列{bn},不具此性质的说明理由;
(Ⅲ)对于有限项数列A:1,2,3,…,n,某人已经验证当n∈[12,m2](m≥5)时,数列A具有“变换P性质”,试证明:当n∈[m2+1,(m+1)2]时,数列A也具有“变换P性质”.

查看答案和解析>>

椭圆具有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.今有一个水平放置的椭圆形球盘,点A,B是它的焦点,长轴长为2a,焦距为2c,小球(半径忽略不计)从点A沿着不与AB重合的直线出发,经椭圆球盘壁反射后第一次回到点A时,小球经过的路程是(  )

查看答案和解析>>


同步练习册答案