垂直于x轴的直线交双曲线于M.N不同两点.A1.A2分别为双曲线的左顶点和右顶点.设直线A1M与A2N交于点P(x0.y0)K^S*5U.C#O% (Ⅰ)证明:(Ⅱ)过P作斜率为的直线l.原点到直线l的距离为d.求d的最小值. 解(Ⅰ)证明: ①直线A2N的方程为 ②-4分 ①×②.得 (Ⅱ) --10分K^S*5U.C#O% 当--12分 查看更多

 

题目列表(包括答案和解析)

垂直于x轴的直线交双曲线x2-2y2=1于M、N不同的两点,A1、A2分别为双曲线的左、右顶点,设A1M与A2N交于点P(x0,y0)(1)证明x02+2y02为定值;(2)过P作斜率为-的直线l,原点到直线l的距离为D求d的最小值

查看答案和解析>>

精英家教网双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为30°的直线交双曲线右支于M点,若MF2垂直于x轴,则双曲线的离心率为(  )
A、
6
B、
3
C、
2
D、
3
3

查看答案和解析>>

双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角30°的直线交双曲线右支于M点,若MF2垂直于x轴,则双曲线的离心率e=
 

查看答案和解析>>

双曲线-=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角30°的直线交双曲线右支于M点,若MF2垂直于x轴,则双曲线的离心率e=   

查看答案和解析>>

双曲线-=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角30°的直线交双曲线右支于M点,若MF2垂直于x轴,则双曲线的离心率e=   

查看答案和解析>>


同步练习册答案