24. 证明:下面用数学归纳法证明 (1) (2)假设时成立.即 由得.原式成立. ------10分 查看更多

 

题目列表(包括答案和解析)

已知,(其中

⑴求

⑵试比较的大小,并说明理由.

【解析】第一问中取,则;                         …………1分

对等式两边求导,得

,则得到结论

第二问中,要比较的大小,即比较:的大小,归纳猜想可得结论当时,

时,

时,

猜想:当时,运用数学归纳法证明即可。

解:⑴取,则;                         …………1分

对等式两边求导,得

,则。       …………4分

⑵要比较的大小,即比较:的大小,

时,

时,

时,;                              …………6分

猜想:当时,,下面用数学归纳法证明:

由上述过程可知,时结论成立,

假设当时结论成立,即

时,

时结论也成立,

∴当时,成立。                          …………11分

综上得,当时,

时,

时, 

 

查看答案和解析>>

试判断下面的证明过程是否正确:

用数学归纳法证明:

证明:(1)当时,左边=1,右边=1

∴当时命题成立.

(2)假设当时命题成立,即

则当时,需证

由于左端等式是一个以1为首项,公差为3,项数为的等差数列的前项和,其和为

式成立,即时,命题成立.根据(1)(2)可知,对一切,命题成立.

查看答案和解析>>

试判断下面的证明过程是否正确:

用数学归纳法证明:

证明:(1)当时,左边=1,右边=1

∴当时命题成立.

(2)假设当时命题成立,即

则当时,需证

由于左端等式是一个以1为首项,公差为3,项数为的等差数列的前项和,其和为

式成立,即时,命题成立.根据(1)(2)可知,对一切,命题成立.

查看答案和解析>>

试判断下面的证明过程是否是用数学归纳法的证明?若不是,请写出正确答案.

用数学归纳法证明:

1+4+7+…+(3n-2)=n(3n-1).

查看答案和解析>>

试判断下面的证明过程是否是用数学归纳法证明.

用数学归纳法证明:+++…+=(n∈N*,n≥2).

查看答案和解析>>


同步练习册答案