题目列表(包括答案和解析)
本小题满分14分)
(Ⅰ)已知函数
,其中
为有理数,且
. 求
的最小值;
(Ⅱ)试用(Ⅰ)的结果证明如下命题:设
,
为正有理数. 若
,则
;
(Ⅲ)请将(Ⅱ)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.
注:当
为正有理数时,有求导公式
.
(本小题满分14分)
设函数
.
(Ⅰ)当
时,求函数
的单调区间;
(Ⅱ)已知
,若函数
的图象总在直线
的下方,求
的取值范围;
(Ⅲ)记
为函数
的导函数.若
,
试问:在区间
上是否存在
(![]()
)个正数
…
,使得
成立?请证明你的结论.
(本小题满分14分) 设函数
.
(Ⅰ)当
时,求函数
的单调区间和极大值点;
(Ⅱ)已知
,若函数
的图象总在直线
的下方,求
的取值范围;
(Ⅲ)记
为函数
的导函数.若
,试问:在区间
上是否存在
(![]()
)个正数
…
,使得
成立?请证明你的结论.
(本小题满分14分)
已知函数
。
(1)证明:![]()
(2)若数列
的通项公式为
,求数列
的前
项和
;w.w.w.k.s.5.u.c.o.m
![]()
(3)设数列
满足:
,设
,
若(2)中的
满足对任意不小于2的正整数
,
恒成立,
试求
的最大值。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com