22. 正实数数列中...且成等差数列. (1)证明数列中有无穷多项为无理数, (2)当为何值时.为整数.并求出使的所有整数项的和. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知数列{an}和{bn}满足:a1=λan+1=其中λ为实数,n为正整数。

(Ⅰ)对任意实数λ,证明数列{an}不是等比数列;

(Ⅱ)试判断数列{bn}是否为等比数列,并证明你的结论;

(Ⅲ)设0<abSn为数列{bn}的前n项和。是否存在实数λ,使得对任意正整数n,都有

aSnb?若存在,求λ的取值范围;若不存在,说明理由。

查看答案和解析>>

(本小题满分14分)

已知数列{an}和{bn}满足:a1=λan+1=其中λ为实数,n为正整数。

(Ⅰ)对任意实数λ,证明数列{an}不是等比数列;

(Ⅱ)试判断数列{bn}是否为等比数列,并证明你的结论;

(Ⅲ)设0<abSn为数列{bn}的前n项和。是否存在实数λ,使得对任意正整数n,都有

aSnb?若存在,求λ的取值范围;若不存在,说明理由。

查看答案和解析>>


(本小题满分14分)
已知函数,当时,取得极小值.
(1)求的值;
(2)设直线,曲线.若直线与曲线同时满足下列两个条件:
①直线与曲线相切且至少有两个切点;
②对任意都有.则称直线为曲线的“上夹线”.
试证明:直线是曲线的“上夹线”.
(3)记,设是方程的实数根,若对于定义域中任意的,当,且时,问是否存在一个最小的正整数,使得恒成立,若存在请求出的值;若不存在请说明理由.

查看答案和解析>>

(本小题满分14分)
已知数列{an}和{bn}满足:a1=λan+1=其中λ为实数,n为正整数。
(Ⅰ)对任意实数λ,证明数列{an}不是等比数列;
(Ⅱ)试判断数列{bn}是否为等比数列,并证明你的结论;
(Ⅲ)设0<abSn为数列{bn}的前n项和。是否存在实数λ,使得对任意正整数n,都有
aSnb?若存在,求λ的取值范围;若不存在,说明理由。

查看答案和解析>>

 

(本小题满分14分)

已知函数,当时,取得极小值.

(1)求的值;

(2)设直线,曲线.若直线与曲线同时满足下列两个条件:

①直线与曲线相切且至少有两个切点;

②对任意都有.则称直线为曲线的“上夹线”.

试证明:直线是曲线的“上夹线”.

(3)记,设是方程的实数根,若对于定义域中任意的,当,且时,问是否存在一个最小的正整数,使得恒成立,若存在请求出的值;若不存在请说明理由.

 

查看答案和解析>>


同步练习册答案