B [命题意图]本小题主要考查双曲线的几何性质.第二定义.余弦定理.考查转化的数学思想.通过本题可以有效地考查考生的综合运用能力及运算能力. [解析]不妨设点P在双曲线的右支,由双曲线的第二定义得..由余弦定理得 cos∠P=,即cos, 解得,所以.故P到x轴的距离为 =|lgx|,若0<a<b,且f,则a+2b的取值范围是 (A) (B) (C) (D) 查看更多

 

题目列表(包括答案和解析)

 (选做题)从A,B,C,D四个中选做2个,每题10分,共20分.解答时应写出文字说明、证明过程或演算步骤.

A.(本小题为选做题,满分10分)

如图,AB是半圆的直径,CAB延长线上一点,CD

切半圆于点DCD=2,DEAB,垂足为E,且E

OB的中点,求BC的长.

 

B.(本小题为选做题,满分10分)

已知矩阵,其中,若点P(1,1)在矩阵A的变换下得到点

(1)求实数a的值;    (2)求矩阵A的特征值及特征向量.

 

C.(本小题为选做题,满分10分)

设点分别是曲线上的动点,求动点间的最小距离.

 

D.(本小题为选做题,满分10分)

为正数,证明:.

 

 

 

 

 

 

查看答案和解析>>

平面直角坐标系xOy中,已知A1(x1,y1),A2(x2,y2),…,An(xn,yn)是直线l:y=kx+b上的n个点
(n∈N*,k、b均为非零常数).
(1)若数列{xn}成等差数列,求证:数列{yn}也成等差数列;
(2)若点P是直线l上一点,且
OP
=a1
OA1
+a2
OA2
,求a1+a2的值;
(3)若点P满足
OP
=a1
OA1
+a2
OA2
+…+an
OAn
,我们称
OP
是向量
OA1
OA2
,…,
OAn
的线性组合,{an}是该线性组合的系数数列.当
OP
是向量
OA1
OA2
,…,
OAn
的线性组合时,请参考以下线索:
①系数数列{an}需满足怎样的条件,点P会落在直线l上?
②若点P落在直线l上,系数数列{an}会满足怎样的结论?
③能否根据你给出的系数数列{an}满足的条件,确定在直线l上的点P的个数或坐标?
试提出一个相关命题(或猜想)并开展研究,写出你的研究过程.[本小题将根据你提出的命题(或猜想)的完备程度和研究过程中体现的思维层次,给予不同的评分].

查看答案和解析>>

(2009湖南卷文)(本小题满分13分)

对于数列,若存在常数M>0,对任意的,恒有

,            

则称数列数列.

(Ⅰ)首项为1,公比为的等比数列是否为B-数列?请说明理由;

(Ⅱ)设是数列的前n项和.给出下列两组判断:

A组:①数列是B-数列,      ②数列不是B-数列;

B组:③数列是B-数列,      ④数列不是B-数列.

请以其中一组中的一个论断为条件,另一组中的一个论断为结论组成一个命题.

判断所给命题的真假,并证明你的结论;

(Ⅲ)若数列是B-数列,证明:数列也是B-数列。

查看答案和解析>>

(本小题满分13分)

对于数列,若存在常数M>0,对任意的,恒有

,则称数列数列。

(Ⅰ)首项为1,公比为的等比数列是否为B-数列?请说明理由;

(Ⅱ)设是数列的前n项和,给出下列两组判断:

A组:①数列是B-数列,      ②数列不是B-数列;

B组:③数列是B-数列,      ④数列不是B-数列。

请以其中一组中的一个论断为条件,另一组中的一个论断为结论组成一个命题。判断所给命题的真假,并证明你的结论;

(Ⅲ)若数列是B-数列,证明:数列也是B-数列。

查看答案和解析>>

(本小题满分14分)已知四棱锥P—ABCD的三视图如右图所示,
其中正(主)视图与侧(左)视为直角三角形,俯视图为正方形。
  (1)求四棱锥P—ABCD的体积;
  (2)若E是侧棱上的动点。问:不论点E在PA的
任何位置上,是否都有
请证明你的结论?
(3)求二面角D—PA—B的余弦值。

查看答案和解析>>


同步练习册答案