C [解析]正方形四个顶点可以确定6条直线.甲乙各自任选一条共有36个基本事件.两条直线相互垂直的情况有5种包括10个基本事件.所以概率等于. [方法技巧]对于几何中的概率问题.关键是正确作出几何图形.分类得出基本事件数.然后得所求事件保护的基本事件数.进而利用概率公式求概率. 某单位有职工750人.其中青年职工350人.中年职工250人.老年职工150人.为了了解该单位职工的健康情况.用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人.则样本容量为 15 35 解析:青年职工.中年职工.老年职工三层之比为7:5:3.所以样本容量为 在某项体育比赛中.七位裁判为一选手打出的分数如下: 90 89 90 95 93 94 93 去掉一个最高分和一个最低分后.所剩数据的平均值和方差分别为 (A)92 , 2 (B) 92 , 2.8 (C) 93 , 2 (D) 93 , 2.8 答案:B ⑶从{1,2,3,4,5}中随机选取一个数为a.从{1,2,3}中随机选取一个数为b.则b>a的概率是 (A) (B) (C) (D) 答案:D 查看更多

 

题目列表(包括答案和解析)

如图,A、B、C、D是某煤矿的四个采煤点,l是公路,图中所标线段为道路,ABQP、BCRQ、CDSR近似于正方形.已知A、B、C、D四个采煤点每天的采煤量之比约为5:1:2:3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P、Q、R、S中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在(  )

查看答案和解析>>

精英家教网请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).
(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?
(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.

查看答案和解析>>

已知正方形四个顶点分别为O(0,0),A(1,0),B(1,1),C(0,1),曲线y=x2(x≥0)与x轴,直线x=1构成区域M,现将一个质点随机地投入正方形中,则质点落在区域M内的概率是(  )
A、
1
2
B、
1
4
C、
1
3
D、
2
5

查看答案和解析>>

   (本小题满分12分)请你设计一个包装盒,如下图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D四个点重合于图中的点P,正好形成一个正四棱挪状的包装盒E、F在AB上,是被切去的一等腰直角三角形斜边的两个端点.设AE= FB=x(cm).

 

 

(I)某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?

(II)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.[

 

查看答案和解析>>

请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).
(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?
(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.

查看答案和解析>>


同步练习册答案