过椭圆+y2=1的一个焦点且倾角为的直线交椭圆于M.N两点.则|MN|等于( ). 1 查看更多

 

题目列表(包括答案和解析)

椭圆的一个焦点F与抛物线y2=4x的焦点重合,且截抛物线的准线所得弦长为,倾斜角为45°的直线l过点F.
(1)求该椭圆的方程;
(2)设椭圆的另一个焦点为,问抛物线y2=4x上是否存在一点M,使得M与关于直线l对称,若存在,求出点M的坐标,若不存在,说明理由.

查看答案和解析>>

已知椭圆=1(a>b>0)的一个焦点F与抛物线y2=4x的焦点重合,且截抛物线的准线所得弦长为,倾斜角为45°的直线l过点F.

(1)求该椭圆的方程;

(2)设椭圆的另一个焦点为F1,问抛物线y2=4x上是否存在一点M,使得M与F1关于直线l对称,若存在,求出点M的坐标,若不存在,说明理由.

查看答案和解析>>

已知椭圆=1(a>b>0)的一个焦点F与抛物线y2=4x的焦点重合,且截抛物线的准线所得弦长为,倾斜角为45°的直线l过点F.

(1)求该椭圆的方程;

(2)设椭圆的另一个焦点为F1,问抛物线y2=4x上是否存在一点M,使得M与F1关于直线l对称,若存在,求出点M的坐标,若不存在,说明理由.

查看答案和解析>>

(2011•韶关模拟)椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的一个焦点F与抛物线y2=4x的焦点重合,且截抛物线的准线所得弦长为
2
,倾斜角为45°的直线l过点F.
(Ⅰ)求该椭圆的方程;
(Ⅱ)设椭圆的另一个焦点为F1,问抛物线y2=4x上是否存在一点M,使得M与F1关于直线l对称,若存在,求出点M的坐标,若不存在,说明理由.

查看答案和解析>>

给出下列结论:
①与圆x2+y2=1及圆x2+y2-8x+12=0都外切的圆的圆心在一个椭圆上.
②若直线y=kx-1与双曲线x2-y2=4右支有两个公共点,则k∈(1,
5
2
)

③经过椭圆
x2
2
+y2=1
的右焦点F作倾斜角为600的直线l交椭圆于A,B两点,且|AF|>|BF|,则
AF
=
9+3
2
7
FB

④抛物线y2=2x上的点P到直线y=x+4的距离的最小值为
7
2
4

其中正确结论的序号是______.

查看答案和解析>>


同步练习册答案