经过A两点的直线与直线x+3y-6=0相交于点M.则M分AB的比是( ) (A) -1 (D)1 查看更多

 

题目列表(包括答案和解析)

经过A(-3,2)和B(6,1)两点的直线与直线x+3y-6=0相交与点M,则点M分所成的比为

[  ]

A.
B.2
C.-1
D.1

查看答案和解析>>

ABC的三个顶点分别为A(0,4),B(-2,6),C(-8,0).

(1)分别求边ACAB所在直线的方程;

(2)求AC边上的中线BD所在直线的方程;

(3)求AC边的中垂线所在直线的方程;

(4)求AC边上的高所在直线的方程;

(5)求经过两边ABAC的中点的直线方程.

查看答案和解析>>

已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.

(Ⅰ)求椭圆E的方程;

(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.

【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为,这样可知得到。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到

,再利用可以结合韦达定理求解得到m的值和圆p的方程。

解:(Ⅰ)设椭圆E的方程为

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以椭圆E的方程为…………………………4分

(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分

 代入椭圆E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,

圆P的方程为(x-2)2+(y-1)2=4;………………………………11分

同理,当m=-3时,直线l方程为y=-x-3,

圆P的方程为(x+2)2+(y+1)2=4

 

查看答案和解析>>

出租车几何学是由十九世纪的赫尔曼-闵可夫斯基所创立的.在出租车几何学中,点还是形如(x,y)的有序实数对,直线还是满足ax+by+c=0的所有(x,y)组成的图形,角度大小的定义也和原来一样.直角坐标系内任意两点定义它们之间的一种“距离”:,请解决以下问题:

1、(理)求线段上一点M(x,y)的距离到原点O(0,0)的“距离”;

(文)求点A(1,3)、B(6,9)的“距离”

2、(理)定义:“圆”是所有到定点“距离”为定值的点组成的图形,求“圆周”上的所有点到点Q(a,b)的“距离”均为r的“圆”方程;

(文)求线段上一点M(x,y)的距离到原点O(0,0)的“距离”;

3、(理)点A(1,3)、B(6,9),写出线段AB的垂直平分线的轨迹方程并画出大致图像.

(文)定义:“圆”是所有到定点“距离”为定值的点组成的图形,点A(1,3)、B(6,9),C(1,9),求经过这三个点确定的一个“圆”的方程,并画出大致图像;

(说明所给图形小正方形的单位是1)

查看答案和解析>>


同步练习册答案