设数列{an}的前n项和Sn=f(n).令 证明数列|bn|是等差数列 查看更多

 

题目列表(包括答案和解析)

设数列{an}的前n项和sn=na+n(n-1)b,=1,2,3…),a,b是常数且b≠0.

(1)证明:{an}是等差数列;

(2)证明:以(an-1)为坐标的点pn(n=1,2,3…)都落在同一条直线上,并写出此直线的方程;

(3)设a=1,b=,C是以(r,r)为圆心,r为半径的圆(r>0),求使得点p1,p2,p3都落在圆C外时,r的取值范围.

查看答案和解析>>

设数列{an}的前n项和为Sn.已知a1=a,an+1=Sn+3n,n∈N*.由
(Ⅰ)设bn=Sn-3n,求数列{bn}的通项公式;
(Ⅱ)若an+1≥an,n∈N*,求a的取值范围.

查看答案和解析>>

设数列{an}的前n项和为Sn,且Sn2-(an+2)Sn+1=0,1-Sn=anbn(n∈N*).
(Ⅰ)求a1,a2的值;
(Ⅱ)求{an}的通项公式;
(Ⅲ)若正项数列{cn}满足cn
a
1+(bn-1)a
(n∈N*,0<a<1)
,求证:
n
k=1
ck
k+1
<1

查看答案和解析>>

设数列{an}的前n项和为Sn,已知a1=1,a2=6,a3=11,且(5n-8)Sn+1-(5n+2)Sn=An+B,n=1,2,3,…,其中A.B为常数.
(1)求A与B的值;
(2)证明:数列{an}为等差数列;
(3)证明:不等式
5amn
-
aman
>1对任何正整数m,n都成立.

查看答案和解析>>

设数列{an}的前n项和为Sn,对一切n∈N*,点(n,Sn)在函数f(x)=x2+x的图象上.
(1)求an的表达式;
(2)设An为数列{
1(an-1)(an+1)
}的前n项和,是否存在实数a
,使得不等式An<a对一切n∈N*都成立?若存在,求出a的取值范围;若不存在,请说明理由;
(3)将数列{an}依次按1项,2项循环地分为(a1),(a2,a3),(a4),(a5,a6),(a7),(a8,a9),(a10),
…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},求b100的值;
(4)如果将数列{an}依次按1项,2项,3项,4项循环;分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},提出同(3)类似的问题((3)应当作为特例),并进行研究,你能得到什么样的结论?

查看答案和解析>>


同步练习册答案