题目列表(包括答案和解析)
若函数f(x)是定义在(0,+∞)上的增函数,且对一切x>0,y>0满足
,则不等式f(x+b)-f
<2f(4)的解为
[ ]
已知函数f(x)=ln(x+1)+mx,当x=0时,函数f(x)取得极大值.
(Ⅰ)求实数m的值;
(Ⅱ)已知结论∶若函数f(x)=ln(x+1)+mx在区间(a,b)内导数都存在,且a>-1,则存在x0∈(a,b),使得
.试用这个结论证明∶若-1<x1<x2,函数
,则对任意x∈(x1,x2),都有f(x)>g(x);
(Ⅲ)已知正数λ1,λ2,…λn,满足λ1+λ2+…+λn=1,求证∶当n≥2,n∈N时,对任意大于-1,且互不相等的实数x1,x2,…,xn,都有f(λ1x1+λ2x2+…+λnxn)>λ1f(x1)+λ2f(x2)+…+λnf(xn).
若f(x)是定义在R上的可导函数,且满足(x-1)
(x)≥0,则必有
A.f(0)+f(2)<2f(1)
B.f(0)+f(2)>2f(1)
C.f(0)+f(2)≤2f(1)
D.f(0)+f(2)>2f(1)
定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时,f(x)=x(1-x),则当-1≤x≤0时,f(x)=________.
定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时,f(x)=x(1-x),则当-1≤x≤0时,f(x)=________.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com