解: (1) ,两边加得: , 是以2为公比, 为首项的等比数列. --① 由两边减得: 是以 为公比, 为首项的等比数列. --② ①-②得: 所以,所求通项为----5分 (2) 当为偶数时, 当为奇数时,,,又为偶数 由(1)知, --------10分 (3)证明: 又 --12分 ----14分 查看更多

 

题目列表(包括答案和解析)

在△ABC中,角A、B、C的对边分别为a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),满足=

(Ⅰ)求角B的大小;

(Ⅱ)设=(sin(C+),), =(2k,cos2A) (k>1),  有最大值为3,求k的值.

【解析】本试题主要考查了向量的数量积和三角函数,以及解三角形的综合运用

第一问中由条件|p +q |=| p -q |,两边平方得p·q=0,又

p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,

,又由余弦定理=2acosB,所以cosB=,B=

第二问中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

=2ksinA+-=-+2ksinA+=-+ (k>1).

而0<A<,sinA∈(0,1],故当sin=1时,m·n取最大值为2k-=3,得k=.

 

查看答案和解析>>

学数学,其实是要使人聪明,使人的思维更加缜密,在美国广为流传的一道数学题目是:老板给你两个加工资的方案.一是每年年末加一千元;二是每半年结束时加300元.请选择一种.一般不擅长数学的人很容易选择前者,因为一年加一千元总比两个半年共加600元要多.其实,由于工资累计的,时间稍长,往往第二种方案更有利.例如在第二年的年末,依第一种方案可以加得1000+2000=3000元,而第二种方案在第一年加得300+600=900元,第二年加得900+1200=2100元,总数也是900+2100=3000元.但到了第三年,第一种方案可以得到1000+2000+3000=6000元,第二种方案可以得到300+600+900+1200+1500+1800=6300元,比第一方案多了300元.第四年,第五年会更多.因此,你若会在公司干三年以上,则应选择第二种方案.
根据以上材料,解答以下问题:
(1)如果在该公司干10年,问选择第二方案比选择第一方案多加薪多少元?
(2)如果第二方案中得每半年加300元改成每半年加 a元,问 a取何值时,选择第二方案总是比选择第一方案多加薪?

查看答案和解析>>

近日国内某大报纸有如下报导:
加薪的学问
学数学,其实是要使人聪明,使人的思维更加缜密.在美国广为流传的一道数学题目:老板给出两个加工资的方案,一是每年年末加一千;二是每半年结束时加300元,请选一种.一般不擅长数学的,很容易选前者,因为一年加一千元总比两半年共600元要多.其实,由于加工资是累计的,时间稍长,往往第二种方案更有利.例如,在二年的年末,依第一种方案可以加得1000+2000=3000元,而第二种方案在第一年加得300+600元,第二年加得900+1200=2100元,总数也是3000元.但到第三年,第一方案可得1000+2000+3000=6000元,第二种方案则为300+600+900+1200+1500+1800=6300元,比第一方案多了300元.第四年、第五年会更多.因此,你若会在该公司工作三年以上,则应选择第二方案.根据以上材料,解答下列问题:
(1)如果在该公司干10年,问选择第二方案比选择第一方案多加薪水多少元?
(2)如果第二方案中的每半年加300元改成每半年加a元,问a取何值时,总是选择第二方案比选择第一方案多加薪?

查看答案和解析>>

12、关于“二分法”求方程的近似解,说法正确的有
(4)

(1)“二分法”求方程的近似解一定可将y=f(x)在[a,b]内的所有零点得到;
(2)“二分法”求方程的近似解有可能得不到y=f(x)在[a,b]内的零点;
(3)应用“二分法”求方程的近似解,y=f(x)在[a,b]内有可能无零点;
(4)“二分法”求方程的近似解可能得到f(x)=0在[a,b]内的精确解;

查看答案和解析>>

3、关于“二分法”求方程的近似解,说法正确的是(  )

查看答案和解析>>