(四)巩固练习: 1.若数列(*)是等差数列.则有数列(*)也为等差数列.类比上述性质.相应地:若数列是等比数列.且(*).则有(*)也是等比数列. 2.设和分别为两个等差数列的前项和.若对任意.都有 .则第一个数列的第项与第二个数列的第项的比是. 说明:. 查看更多

 

题目列表(包括答案和解析)

已知数列满足).
(1)若数列是等差数列,求数列的前项和
(2)证明:数列不可能是等比数列.

查看答案和解析>>

在数列中,若为常数),则称数列.
(1)若数列数列,,写出所有满足条件的数列的前项;
(2)证明:一个等比数列为数列的充要条件是公比为
(3)若数列满足,设数列的前项和为.是否存在
正整数,使不等式对一切都成立?若存在,求出的值;
若不存在,说明理由.

查看答案和解析>>

若数列的前n项和为,则下列命题:

(1)若数列是递增数列,则数列也是递增数列;

(2)数列是递增数列的充要条件是数列的各项均为正数;

(3)若是等差数列(公差),则的充要条件是

(4)若是等比数列,则的充要条件是

其中,正确命题的个数是(    )

A.0个               B.1个         C.2个            D.3个

 

查看答案和解析>>

已知数列满足).
(1)若数列是等差数列,求它的首项和公差;
(2)证明:数列不可能是等比数列;
(3)若),试求实数的值,使得数列为等比数列;并求此时数列的通项公式.

查看答案和解析>>

数列的前n项和记为在直线上,.(1)若数列是等比数列,求实数的值;
(2)设各项均不为0的数列中,所有满足的整数的个数称为这个数列的“积异号数”,令),在(1)的条件下,求数列的“积异号数”

查看答案和解析>>


同步练习册答案