题目列表(包括答案和解析)
已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x)
1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使
恒成立.
【解析】解:
令
.
当
时
单调递减;当
时
单调递增,故当
时,
取最小值![]()
于是对一切
恒成立,当且仅当
. ①
令
则![]()
当
时,
单调递增;当
时,
单调递减.
故当
时,
取最大值
.因此,当且仅当
时,①式成立.
综上所述,
的取值集合为
.
(Ⅱ)由题意知,
令
则
![]()
![]()
令
,则
.当
时,
单调递减;当
时,
单调递增.故当
,
即![]()
从而
,
又![]()
![]()
所以![]()
因为函数
在区间
上的图像是连续不断的一条曲线,所以存在
使
即
成立.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出
取最小值
对一切x∈R,f(x)
1恒成立转化为
从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.
| x2 |
| m |
| y2 |
| 27 |
|
| A、[9,+∞) |
| B、(1,9] |
| C、(1,2] |
| D、[2,+∞) |
已知直线
与双曲线
,有如下信息:联立方程组
消去
后得到方程
,分类讨论:(1)当
时,该方程恒有一解;(2)当
时,
恒成立。在满足所提供信息的前提下,双曲线离心率的取值范围是( )
A.
B.
C.
D.![]()
(12分) 对于在区间 [ m,n ] 上有意义的两个函数
与
,如果对任意
,均有
,则称
与
在 [ m,n ] 上是友好的,否则称
与
在 [ m,n ]是不友好的.现有两个函数
与
(a > 0且
),给定区间
.
(1)
若
与
在给定区间
上都有意义,求a的取值范围;
(2)
讨论
与
在给定区间
上是否友好.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com