15.已知 且满足. (1)求证, (2)求的最大值.并求当取得最大值时.的值. 解:(1) 2分 4分 5分 (2) 7分 9分 当且仅当取最大值.最大值为 此时 12分 查看更多

 

题目列表(包括答案和解析)

(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

已知点是直角坐标平面内的动点,点到直线的距离为,到点的距离为,且.

(1)求动点P所在曲线C的方程;

(2)直线过点F且与曲线C交于不同两点AB(点AB不在x轴上),分别过AB点作直线的垂线,对应的垂足分别为,试判断点F与以线段为直径的圆的位置关系(指在圆内、圆上、圆外等情况);

(3)记,,(AB、是(2)中的点),问是否存在实数,使成立.若存在,求出的值;若不存在,请说明理由.

进一步思考问题:若上述问题中直线、点、曲线C:,则使等式成立的的值仍保持不变.请给出你的判断            (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).

查看答案和解析>>

(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

已知点是直角坐标平面内的动点,点到直线的距离为,到点的距离为,且.

(1)求动点P所在曲线C的方程;

(2)直线过点F且与曲线C交于不同两点AB(点AB不在x轴上),分别过AB点作直线的垂线,对应的垂足分别为,试判断点F与以线段为直径的圆的位置关系(指在圆内、圆上、圆外等情况);

(3)记,,(AB、是(2)中的点),问是否存在实数,使成立.若存在,求出的值;若不存在,请说明理由.

进一步思考问题:若上述问题中直线、点、曲线C:,则使等式成立的的值仍保持不变.请给出你的判断            (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).

查看答案和解析>>

已知递增等差数列满足:,且成等比数列.

(1)求数列的通项公式

(2)若不等式对任意恒成立,试猜想出实数的最小值,并证明.

【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列公差为

由题意可知,即,解得d,得到通项公式,第二问中,不等式等价于,利用当时,;当时,;而,所以猜想,的最小值为然后加以证明即可。

解:(1)设数列公差为,由题意可知,即

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等价于

时,;当时,

,所以猜想,的最小值为.     …………8分

下证不等式对任意恒成立.

方法一:数学归纳法.

时,,成立.

假设当时,不等式成立,

时,, …………10分

只要证  ,只要证 

只要证  ,只要证 

只要证  ,显然成立.所以,对任意,不等式恒成立.…14分

方法二:单调性证明.

要证 

只要证  ,  

设数列的通项公式,        …………10分

,    …………12分

所以对,都有,可知数列为单调递减数列.

,所以恒成立,

的最小值为

 

查看答案和解析>>

(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分。

 已知是公差为d的等差数列,是公比为q的等比数列。

(1)若,是否存在,有?请说明理由;

(2)若aq为常数,且aq0)对任意m存在k,有,试求aq满足的充要条件;

(3)若试确定所有的p,使数列中存在某个连续p项的和式数列中的一项,请证明。

查看答案和解析>>

(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

已知椭圆的方程为的三个顶点.

(1)若点满足,求点的坐标;

(2)设直线交椭圆两点,交直线于点.若,证明:的中点;

(3)设点在椭圆内且不在轴上,如何构作过中点的直线,使得与椭圆的两个交点满足?令,点的坐标是(-8,-1),若椭圆上的点满足,求点的坐标.

查看答案和解析>>


同步练习册答案