(四)巩固练习: 1.已知函数在同一周期内.当时.取得最大值.当时.取得最小值.则该函数的解析式是 ( ) 2.若方程有解.则. 查看更多

 

题目列表(包括答案和解析)

(1)已知函数f(x)为一次函数,且有f(-1)=-1,f(1)=5.求函数f(x)的解析式.
(2)若函数f(x)=x2+bx+c,且过点(1,0)和(3,0),求f(-1)的值.

查看答案和解析>>

(1)已知函数f(x)=ax-x(a>1).
①若f(3)<0,试求a的取值范围;
②写出一组数a,x0(x0≠3,保留4位有效数字),使得f(x0)<0成立;
(2)在曲线y=x-
2
x
上存在两个不同点关于直线y=x对称,求出其坐标;若曲线y=x+
p
x
(p≠0)上存在两个不同点关于直线y=x对称,求实数p的范围;
(3)当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并取a=
1
16
a=
2
2
加以研究.当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并加以解决.(说明:①函数f(x)=xlnx有如下性质:在区间(0,
1
e
]
上单调递减,在区间[
1
e
,1)
上单调递增.解题过程中可以利用;②将根据提出和解决问题的不同层次区别给分.)

查看答案和解析>>

设函数f(x)=
a
3
x3-
1
2
x2-(a+1)x-a-1
,其中a为实数.
(1)已知函数g(x)=f(x)-f′(x)是奇函数,直线l1是曲线f(x)的切线,且l1⊥l2,l2:x-2y-8=0,求直线l1的方程;
(2)讨论f(x)的单调性.

查看答案和解析>>

(1)已知函数f(x)=
ax-1ax+1
(a>0且a≠1).
(Ⅰ) 求f(x)的定义域和值域;
(Ⅱ) 讨论f(x)的单调性.
(2)已知f(x)=2+log3x(x∈[1,9]),求函数y=[f(x)]2+f(x2)的最大值与最小值.

查看答案和解析>>

下列说法中:
①若函数f(x)=ax2+(2a+b)x+2(x∈[2a-1,a+4])是偶函数,则实数b=2;
②f(x)表示-2x+2与-2x2+4x+2中的较小者,则函数f(x)的最大值为1;
③已知函数f(x)是定义在R上的不恒为零的函数,且对任意的x,y∈R都满足f(xy)=xf(y)+yf(x),则f(x)是奇函数;
④设lg2=a,lg3=b那么可以得到log56=
a+b1-a

⑤函数f(x)=log2(3+2x-x2)的值域是(0,2),其中正确说法的序号是
①③④
①③④
(注:把你认为是正确的序号都填上).

查看答案和解析>>


同步练习册答案