(二)主要方法: 1.三角函数式的化简: 三角函数式的化简常用方法是:异名函数化为同名三角函数.异角化为同角.异次化为同次.切割化弦.特殊值与特殊角的三角函数互化. 2.三角恒等式的证明: 三角恒等式包括有条件的恒等式和无条件的恒等式.①无条件的等式证明的基本方法是化繁为简.左右归一.变更命题等.使等式两端的“异 化为“同 ,②有条件的等式常用方法有:代入法.消去法.综合法.分析法等. 查看更多

 

题目列表(包括答案和解析)

已知,求下列各式的值:

(1) 

(2)

【解析】本试题主要考查了同角三角函数关系式的运用。第一问中利用将分子分母同时除以得,原式=第二问中,构造分式表达式,原式= =  =

 

查看答案和解析>>

某客运公司为了了解客车的耗油情况,现采用系统抽样方法按1:10的比例抽取一个样本进行检测,将所有200辆客车依次编号为1,2,…,200,则其中抽取的4辆客车的编号可能是(  )

查看答案和解析>>

某工厂生产A、B、C 三种不同型号的产品,产量之比为2:3:5.现用分层抽样的方法抽取1个容量为n的样本,若样本中A种型号的产品有15件,则样本容量n=
75
75

查看答案和解析>>

16、用红、黄、蓝、白、黑五种颜色在“田”字形的4个小方格内,每格涂一种颜色,相邻(有公共边)两格涂不同的颜色,如果颜色可以反复使用,共有
260
种不同的涂色方法.
1 2
3 4

查看答案和解析>>

求Sn=1×2+2×3+3×4+…+n(n+1)(n∈N*)可用如下方法:
1×2=
1
3
(1×2×3-0×1×2)
2×3=
1
3
(2×3×4-1×2×3)
3×4=
1
3
(3×4×5-2×3×4)
n(n+1)=
1
3
[n(n+1)(n+2)-(n-1)n(n+1)]

将以上各式相加,得Sn=
1
3
n(n+1)(n+2),仿此方法,求Sn=1×2×3+2×3×4+…+n(n+1)(n+2)(n∈N*).

查看答案和解析>>


同步练习册答案